HOMEWORK 1 - MATH 100A - DUE WEDNESDAY OCTOBER 4TH

Problem 1. (From Herstein $\S 1.2 \# 5)$ If $A \subset B$ and $B \subset C$, prove that $A \subset C$.
Problem 2. (From Herstein §1.2\#8) Prove that $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$. What does this look like pictorially?

Problem 3. (From Herstein $\S 1.2 \# 14)$ If C is a finite set, let $m(C)$ denote the number of elements in C. If A, B are finite sets, prove that

$$
m(A \cup B)=m(A)+m(B)-m(A \cap B)
$$

Problem 4. (From Herstein $\S 1.3 \# 1$) If $s_{1} \neq s_{2}$ are in S, show that there is an $f \in A(S)$ such that $f\left(s_{1}\right)=s_{2}$.

Problem 5. (From Herstein $\S 1.3$ \# 13) Show that there is a positive integer t such that $f^{t}=i$ for all $f \in S_{n}$.

Problem 6. (From Herstein $\S 1.5 \# 12)$ Starting with 2, 3, 5, 7, ..., construct the positive integers $1+2 \cdot 3,1+2 \cdot 3 \cdot 5,1+2 \cdot 3 \cdot 5 \cdot 7, \ldots$. Do you always get a prime number this way?

Problem 7. (From Herstein $\S 1.6$ \#13) Prove by induction on n, that $n^{3}-n$ is always divisible by 3 .

Problem 8. (From Herstein $\S 1.7$ \# 7) Verify the commutative law of multiplication $z w=w z$ in \mathbb{C}.

Problem 9. (From Herstein $\S 1.7 \# 17)$ Viewing the $x-y$ plane as the set of all complex numbers $x+i y$, show that multiplication by i induces a 90° rotation of the $x-y$ plane in a counter-clockwise direction.

Problem 10. We say a complex number $\zeta \in \mathbb{C}$ is an n-th root of unity if $\zeta^{n}=1$ (equivaleintly if ζ is a root of $x^{n}-1$). Prove that the sum of all n-th roots of unity is 0 .

