HOMEWORK 2 - MATH 100A - DUE FRIDAY OCTOBER 13TH

Problem 1. (From Herstein $\S 2.1 \# 1$) Determine if the following sets G with the operation indicated form a group. If not, point out which of the group axioms fail.

- $G=$ set of all integers $a * b=a-b$.
- $G=$ set of all integers, $A * b=a+b+a b$.
- $G=$ set of nonegative integers, $a * b=a+b$.
- $G=$ set of all rational number $\neq-1, a * b=a+b+a b$.
- $G=$ set of all rational numbers with denominator divisible by 5 (written so that numerator and denominator are relatively prime), $a * b=a+b$.
- G a set having more than one element. $a * b=a$ for all $a, b \in G$.

Problem 2. (Herstein $\S 2.1 \# 9)$ If G is a group in which $a^{2}=e$ for all $a \in G$, show that G is abelian.
Problem 3. (From Herstein §2.1 \# 11) In Example 10, for $n=3$ find a formula that expresses $\left(f^{i} h^{j}\right) *\left(f^{s} * h^{t}\right)$ as $f^{a} * h^{b}$. Show that G is a nonabelian group of order 6 .

Problem 4. (From Herstein $\S 2.1 \# 20)$ Find all the elements in S_{4} such that $x^{4}=e$.
Problem 5. (From Herstein $\S 2.1 \# 26$) If G is a finite group, prove that, given $a \in G$, there is a positive integer n, depending on a such that $a^{n}=e$.

Problem 6. (From Herstein $\S 2.1 \# 27)$ In the previous problem, show that there is an integer $m>0$ such that $a^{m}=e$ for all $a \in G$. (the smallest such integer is sometimes called the exponent of a group)

Problem 7. (From Herstein $\S 2.3 \# 1)$ If A, B are subgroups of G, show that $A \cap B$ is a subgroup of G.

Problem 8. (From Herstein $\S 2.3 \# 7)$ In S_{3} find $C(a)$ for each $a \in S_{3}$.
Problem 9. (From Herstein $\S 2.3 \# 13)$ If G is cyclic, show that every subgroup of G is cyclic.

Problem 10. Consider the group $G=\mathrm{GL}_{2}(\mathbb{R})$ of (2×2) invertible matrices with real coefficients. Show that

$$
Z(G)=\left\{A \left\lvert\, A=\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right]\right. \text { is diagonal }\right\} .
$$

Challenge: Can you prove the analogous statement when $G=\mathrm{GL}_{n}(\mathbb{R})$ is the group of $(n \times n)$-matrices?

