
MATH 100A Homework 2 Solutions

Comments from the grader: a few students misunderstood associativity as commutativity.

About half of the students were not careful enough for the fourth part of 1, as they did not check

thatQ�f1g is closed under the operation (but no points were deducted for this). In problem 6,

some students used the division algorithm, and the grader did not understand what they were

doing. About 20% did not understand the difference between problems 5 and 6.

1. Z is not a group under subtraction, because subtraction is not associative:

0� (0� 1) = 1 6= �1 = (0� 0)� 1.

Moreover, there is no n 2 Z such that n�m = m for all m 2 Z.

Z is not a group under the operation a � b := a + b + ab either, as �1 has no inverse. In

fact multiplication by �1 is not injective: for all n 2 Z

n � (�1) = n� 1� n = �1.

N is not a group under addition, because 1 has no inverse (1 + n � 1 for all n 2 N).

Q� f�1g is a group under the given operation, with identity 0 and

a�1 = �
a

a + 1

for all a 2 Q� f�1g.

The set of rational numbers with denominator divisible by five (when written in lowest

terms) is not closed under addition, because 2
5 +

3
5 =

1
1 .

If G has more than one element, then the operation a � b := a has no identity element:

given a candidate e 2 G, pick a different element a 2 G and note that e � a = e 6= a.

2. Let a, b 2 G. By assumption abab = (ab)2 = e. Multiplying by a and b gives

ba = a2bab2 = a(abab)b = aeb = ab.

3. From example 10 in the book, we know that f h = h�1 f . Conjugating both sides by h�1

gives h f = f h�1. You can show by induction that h j f = f h� j for all j 2 N. Conjugating

both sides by h j extends this to all j 2 Z. In a similar way, you can prove that

h j f s = f sh(�1)s j

for all s, j 2 Z. It follows that

( f ih j) � ( f sht) = f i+sh(�1)s j+t
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for all i, j, s, t 2 Z. By dividing the exponents by 2 and n respectively, and taking remain-

ders, you can write this as f ahb for some a 2 f0, 1g and b 2 f0, . . . , n � 1g. Therefore

D2n is closed under the operation. The operation is associative, because it is just function

composition. Moreover, the identity function f 0h0 belongs to D2n. Finally, each element

f ahb 2 D2n has an inverse, namely hn�b f 2�a. Therefore D2n is a group.

To see that D6 has order 6, we need to check that the elements f ahb are distinct for

a 2 f0, 1g and b 2 f0, 1, 2g. This can be done, for example, by writing down matrices

representing each element. It follows that D6 is nonabelian, because

h f = f h�1 = f h2 6= f h.

4. The identity permutation has order 1.

Let a, b, c, d 2 f1, 2, 3, 4g be distinct. You can check directly that the permutation which

sends a 7! b 7! c 7! d 7! a has order 4. There are 3� 2 = 6 such permutations, because 1

can be sent to 3 possible elements (namely 2, 3 or 4), the latter has 2 places to go, and the

others have no choice.

The permutation which swaps a with b and c with d clearly has order 2. There are only 3

such permutations, because 1 can be sent to 3 possible elements, and the other two must

be swapped.

The permutation which just swaps a with b also has order 2. However, there are (4
2) = 6

such permutations, one for each choice of fa, bg � f1, 2, 3, 4g.

On the other hand, the permutation which sends a 7! b 7! c 7! a and fixes d has order 3.

There are 4� 2 = 8 such permutations, because d can be any element of f1, 2, 3, 4g, and

the smallest element of f1, 2, 3, 4g � fdg has just 2 places to go.

Since S4 has 4! = 24 elements, and 1 + 6 + 3 + 6 + 8 = 24, every element of S4 is de-

scribed above. The elements x 2 S4 such that x4 = e are those appearing in the first four

paragraphs (but not the fifth).

5. Suppose that, for some a 2 G, there is no positive integer n such that an = e. If i, j 2 Z

and i 6= j, then ai 6= a j, since otherwise i � j or j � i would be such a positive integer n.

This shows that the function Z! G sending i 7! ai is injective, contradicting the fact that

G is finite. Thus, for every a 2 G, there is a positive integer n such that an = e.

6. Since G is finite, we can list its elements: G = fa1, . . . , ajGjg. For each i there is a positive

integer ni such that ani
i = e. Let m be the product of the ni, i.e. m := n1 � � � njGj. If a 2 G,
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then a = ai for some i, in which case ani = e and hence akni = e for all k 2 Z. In particular

am = e.

7. Let A and B be subgroups of G. As proven in the book, it suffices to show that A \ B is

closed under the operation and under taking inverses. To this end, let x, y 2 A \ B. Since

x, y 2 A, and A is a subgroup, xy 2 A and x�1 2 A. Similarly xy 2 B and x�1 2 B.

Therefore xy 2 A \ B and x�1 2 A \ B, which completes the proof.

8. For each a 2 f1, 2, 3g let sa be the permutation which fixes a but swaps the other two

elements. Also let t be the permutation which sends 1 7! 2 7! 3 7! 1. You can check (as

in problem 4) that S3 = fe, s1, s2, s3, t, t�1g. Clearly C(e) = S3.

You can check directly that s1 does not commute with s2. A similar argument shows that

none of the si commute with each other. Therefore C(s1) � fe, s1, t, t�1g. Since C(s1) is

a subgroup of S3, it either contains t and t�1, or neither of them. Moreover, the order of

C(s1) divides 6 (by Lagrange’s theorem). Since fe, s1g � C(s1), the only possibility is that

C(s1) = fe, s1g. Similarly C(s2) = fe, s2g and C(s3) = fe, s3g.

Since t does not belong to any C(si), it does not commute with any si. This implies that

C(t) � fe, t, t�1g. We already know that fe, tg � C(t), so t�1 2 C(t) because C(t) is a

subgroup of S3. Therefore C(t) = fe, t, t�1g. The same argument applies to C(t�1).

9. Let H be a subgroup of a cyclic group G. If H = f1g, then H = (1) is cyclic. Otherwise,

there is a smallest positive integer n such that an 2 H. We aim to show that H = (an).

Since H is a subgroup of G, (an) � H. To prove the reverse inclusion, let h 2 H. Since

h 2 G, we can write h = ak for some k 2 Z. Dividing by n gives q, r 2 Z such that

k = qn + r and 0 � r < n. In fact r = 0, since

ar = ak�qn = ak(an)�q 2 H

(otherwise r < n is a positive integer such that ar 2 H). Therefore h = ak = (an)q 2 (an).

10. We might as well just do the challenge problem. Given indices i 6= j, let Ei j denote the

n � n matrix which has a 1 in the ith row of the jth column, and zeros everywhere else.

Also let I be the n� n identity matrix. Note that I + Ei j 2 G, because det(I + Ei j) = 1 (as

a triangular matrix, its determinant is just the product of the diagonal entries).

Let A 2 Z(G), and denote the ith entry of the jth column of A by ai j. You can check that

AEi j =

0
BB@

0 . . . 0 a1i 0 . . . 0
... . . . ...

...
... . . . ...

0 . . . 0 ani 0 . . . 0

1
CCA
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has zeros in all but the jth column, which is a copy of the ith column of A. Similarly

Ei j A =

0
BBBBBBBBBBBBB@

0 . . . 0
... . . . ...

0 . . . 0

a j1 . . . a jn

0 . . . 0
... . . . ...

0 . . . 0

1
CCCCCCCCCCCCCA

has the jth row of A as its ith row. Since A is central, A(I + Ei j) = (I + Ei j)A. Cancelling

A from both sides gives AEi j = Ei j A. Since AEi j is zero outside the jth column, and Ei j A

is zero outside the ith row, aki = 0 for all k 6= i and a jk = 0 for all k 6= j. The remaining

nonzero entry of AEi j is aii, which matches up with a j j inside Ei j A. By varying i and j, we

see that ai j = 0 whenever i 6= j, but aii = a j j. In other words A = a11 I.

Conversely, if A = aI for some a 2 R, then AB = aIB = aB = aBI = B(aI) = BA for any

n� n matrix B, so in particular A 2 Z(G). Therefore

Z(G) = faI j a 2 Rg.
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