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Hi, I am the grader of this course and I will write the sample solution if I have time. Usually,
I would let the computer to generate two random numbers and grade those two problems unless I
really want to grade a certain problem.

Some comments on this homework: I think some of students don’t understand why we need
to check a function is well-defined sometime. Usually when we have a function defined on a set of
equivalence classes(cosets), we need to check it is well-defined. Essentially coset(equivalence class)
is a set and we choose explicitly a representative for the coset. For example, let G = Z under
addition and H = 5Z = {. . . ,−5, 0, 5, 10, . . .} be a subgroup(easy check). Then consider the coset
(we are in abelian group and left coset is the same as right coset), 0+H = H = {. . . ,−5, 0, 5, 10, . . .}.
Then 0 is a representative of the coset 0 + H. However any element in the coset to be chosen to
be the representative. In this case 0 + H = 5 + H = 10 + H = 15 + H = −5 + H. The problem
is that, when we define a function from the set of cosets to another set and use the representative
in definition(e.g question 4), it not guaranteed that the image of a coset is independent of the
choice of its representative. However a function should send one element to exactly one element
and hence the choice of representative should not influence the image of the coset. This is what we
are checking when we check a function defined on a set of cosets is well-defined.

1. We first check that ∼ defines a equivalence relation. Let G be a group and H ⊂ G be a
subgroup, ∀ a, b, c ∈ G, we have

(a) a−1a = e ∈ H =⇒ a ∼ a
(b) b ∼ a =⇒ b−1a ∈ H =⇒ a−1b = (b−1a)−1 ∈ H =⇒ a ∼ b
(c) a ∼ b, b ∼ c =⇒ a−1b, b−1c ∈ H =⇒ a−1c = (a−1b)(b−1c) ∈ H =⇒ a ∼ c

Hence ∼ is a equivalence relation.

Then ∀ a ∈ G, we will prove that [a] = aH.

Pick g ∈ [a], we have a ∼ g and a−1g ∈ H which gives that a−1g = h for some h ∈ H. Hence
g = ah ∈ aH and we have [a] ⊂ aH
For the other direction, pick g ∈ aH, we have g = ah for some h ∈ H and hence a−1g = h ∈ H.
Then we conclude that a ∼ g and g ∈ [a]. Hence aH ⊂ [a]. We conclude that aH = [a] for
all a ∈ G.

2. Let H be a subgroup of a group G. Pick a ∈ G and let aH be a left coset, we have aH = Hb
for some b ∈ G. Then ae = a ∈ aH = Hb. Then we have aH = Hb = Ha.(if this is not
proved in your lecture, try to prove it yourself that Ha = Hb is equivalent to a ∈ Hb)
∀ a ∈ G, we have Ha = aH. Pick aha−1 ∈ aHa−1, we have ah ∈ aH = Ha which gives
that ah = h′a for some h′ ∈ H. Hence aha−1 = h′aa−1 = h′ ∈ H, and we conclude that
aHa−1 ⊂ H.
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Pick h ∈ H, since ha ∈ Ha = aH, we have ha = ah′ for some h′ ∈ H. Then h = ah′a−1 ⊂
aHa−1 gives that H ⊂ aHa−1. Hence we conclude that H = aHa−1

3. Here are all the cosets:

[0] +H = {[0], [4], [8], [12]}
[1] +H = {[1], [5], [9], [13]}
[2] +H = {[2], [6], [10], [14]}
[3] +H = {[3], [7], [11], [15]}

4. Let L = {aH | a ∈ G} be the set of left cosets and R = {Ha | a ∈ G} be the set of right
cosets. Define

f : L 7→ R via aH 7→ Ha−1

We will check that this function is well-defined and bijective.

Let aH = bH be two representative of the same coset, we need to check they have the same
image. Since aH = bH, we have a = bh for some h ∈ H. Then we have a−1 = h−1b−1 with
h−1 ∈ H as H is a subgroup. Hence we have Ha−1 = Hb−1 and the function is well-defined.

The surjective is obvious, for every Ha ∈ R, we have a−1H ∈ L such that f(a−1H) = Ha.

Suppose f(aH) = f(bH), then we have Ha−1 = Hb−1 and hence a−1 = hb−1 for some h ∈ H.
Then taking the inverse, we have a = bh−1 with h−1 ∈ H. Hence aH = bH and the function
is injective.

Then we have a bijection between set of left cosets and set of right cosets, hence there are
same number of distinct left, right cosets.

5. the order of U18 (the standard symbol should be (Z/18Z)×, which is more common in a modern
algebra book) is ϕ(18) = ϕ(2 · 32) = (2− 1) · (3− 1) · 32−1 = 6.

U18 = {[1], [5], [7], [11], [13], [17]}. By a tedious calculation, we find that the order of [5] is
6 = |U18|. Hence U18 is cyclic. (a little bit digression: Un is cyclic if and only if n = 2, 4, pn, 2pn

for prime p 6= 2 and n ∈ Z+)

6. Since G is finite, we list its element as G = {a1, . . . , an}. Consider x2 = (a1 · · · an)(a1 · · · an).
Since G is abelian and each elements ai will have distinct inverse, then by reordering the
multiplication, we have x2 = (a1 · · · an)(a1 · · · an) = (a1a1

−1) · · · (anan−1) = e

7. Let D8 = {e, σ, σ2, σ3, τ, στ, σ2τ, σ3τ} where σ is rotation and τ is reflection. Here are all the
5 conjugation classes of D8:

{e}, {σ2}, {σ, σ3}, {τ, σ2τ}, {στ, σ3τ}

8. Suppose n is not a prime, then we have n = ab for 1 < a, b < n. Then we have [a], [b] ∈
Zn − {[0]}, but [a][b] = [ab] = [n] = [0] /∈ Zn − {[0]} which contradicts that G is a group and
should be closed under multiplication.

Let n be a prime, then [1] is clearly the identity, and associativity is obvious since the regular
multiplication of integers are associative. Let [a], [b] ∈ Zn − {[0]}, we have [a][b] 6= [0] since
if so, we would have n|ab and n is prime would imply n|a or n|b. Then [a] = [0] or [b] = [0]
would be a contradiction. Hence Zn−{[0]} is closed under the multiplication. Then you can
either use the Euclidean Algorithm or the Fermat’s Little Theorem(Lagrange Theorem) to
prove the existence of inverse.
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9. Let G =< a > be a cyclic group with a generator a and has order n. Then G = {a, a1, . . . , an}.
Let o(a) to denote the order of a. We have

o(ai) =
o(a)

gcd(i, o(a))
=

n

gcd(i, n)

Then ai with 1 ≤ i ≤ n is an generator of G if and only if o(ai) = o(a) = n which is equivalent
to gcd(i, n) = 1. Then by Euler, we have exactly φ(n) generators and they are exactly ai

with 1 ≤ i ≤ n coprime to n.

10. Let G =< a > be a cyclic group with a generator a and has order n. Then G = {a, a1, . . . , an}.
Let o(a) to denote the order of a. We have

o(ai) =
o(a)

gcd(i, o(a))
=

n

gcd(i, n)

Then for every m|n, ai ∈ G with 1 ≤ i ≤ n has order m if and only if gcd(i, n) = n/m. Since
(n/m)|n, the previous statement is equivalent to gcd(i,m) = 1 and we have exactly φ(m) of
them.

Then let’s try to count the number of elements of G in 2 ways. We know that there are
exactly n elements. On the other hand, each element has a unique order m|n. Hence we
can sum up the number of elements of each order m|n and still count the total number of
elements. Also we know that for each order m|n, there are exactly φ(m) elements and hence
we have

n =
∑
m|n

φ(m)
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