HOMEWORK 4 - MATH 100A - DUE FRIDAY OCTOBER 27TH

Problem 1. (From Herstein $\S2.5 \#1$) Determine in each of the parts if the given mapping is a homomorphism. If so, identify its kernel and whether or not the mapping is 1-1 or onto.

- $G = \mathbb{Z}$ under $+, G' = \mathbb{Z}_n$. $\varphi(a) = [a]$ for $a \in \mathbb{Z}$.
- G a group, $\varphi \colon G \to G$ defined by $\varphi(a) = a^{-1}$ for $a \in G$.
- G an abelian group, $\varphi \colon G \to G$ defined by $\varphi(a) = a^{-1}$ for $a \in G$.
- G the group of all nonzero real numbers under multiplication, $G' = \{1, -1\}, \varphi(r) = 1$ if r > 0 and $\varphi(r) = -1$ if r negative.
- G an abelian group, n > 1 a fixed integer, and $\varphi: G \to G$ defined by $\phi(a) = a^n$ for all $a \in G$.

Problem 2. (Herstein §2.5 # 6) Prove that if $\varphi: G \to G'$ is a homomorphism, then $\varphi(G)$ (the image of G), is a subgroup of G'.

Problem 3. (From Herstein §2.5 # 7) Show that $\varphi: G \to G'$ is a monomorphism if and only if $\operatorname{Ker}(\varphi) = \{e\}.$

Problem 4. (From Herstein §2.5 # 14) If G is abelian and $\varphi \colon G \to G'$ is a surjective homomorphism then G' is abelian.

Problem 5. (From Herstein §2.5 #24 parts (a) and (e)) If G_1 , G_2 are two groups, let $G = G_1 \times G_2$ be the Cartesian product of the sets G_1 and G_2 . Define a product in G by $(a_1, b_1) * (a_2, b_2) = (a_1 * a_2, b_1 * b_2)$.

- Prove that G is a group.
- Prove that $G_1 \times G_2 \cong G_2 \times G_1$.

Problem 6. (From Herstein §2.5 #26) If G is a group and $a \in G$, define $\sigma_a \colon G \to G$ by $\sigma_a(g) = aga^{-1}$. We saw in Example 9 of this section that σ_a is an isomorphism of G onto itself, so $\sigma_a \in A(G)$, the group all 1-1 mappings of G (as a set) onto itself. Define $\psi \colon G \to A(G)$ by $\psi(a) = \sigma_a$ for all $a \in G$. Prove that:

- ψ is a homomorphism of G into A(G).
- $\operatorname{Ker}(\psi) = Z(G)$ (the *center* of G).

Problem 7. (From Herstein §2.5 #27) If θ is an automorphism of G and $N \leq G$, prove that $\theta(N) \leq G$.

Problem 8. Prove that $S_3 \cong D_6$. Challenge Problem (=not required): prove that any nonabelian group of order 6 is isomorphic to S_3 .

Problem 9. Let $T \subset \mathbb{R}^3$ denote a *regular tetrahedron* centered at $(0,0,0) \in \mathbb{R}^3$. For example, you can choose the vertices of T to be at the coordinates $\{(1,1,-1),(1,-1,1),(-1,1,1),(-1,-1,-1)\}$.

A tetrahedron.

Define:

Isom $(T) = \{A \in \operatorname{GL}_3(\mathbb{R}) | A(T) = T\} = ($ matrices which give a bijection: $A: T \to T) \subset \operatorname{GL}_3(\mathbb{R}).$

Prove that Isom(T) is a group, compute its order. (You can use the following fact without proof: any matrix A which maps T bijectively onto T must send the vertices to the vertices.)

Problem 10. Prove that $\text{Isom}(T) \cong S_4$.