Problem 1. (From Herstein $\S 2.5 \# 1)$ Determine in each of the parts if the given mapping is a homomorphism. If so, identify its kernel and whether or not the mapping is 1-1 or onto.

- $G=\mathbb{Z}$ under,$+ G^{\prime}=\mathbb{Z}_{n}$. $\varphi(a)=[a]$ for $a \in \mathbb{Z}$.
- G a group, $\varphi: G \rightarrow G$ defined by $\varphi(a)=a^{-1}$ for $a \in G$.
- G an abelian group, $\varphi: G \rightarrow G$ defined by $\varphi(a)=a^{-1}$ for $a \in G$.
- G the group of all nonzero real numbers under multiplication, $G^{\prime}=\{1,-1\}, \varphi(r)=1$ if $r>0$ and $\varphi(r)=-1$ if r negative.
- G an abelian group, $n>1$ a fixed integer, and $\varphi: G \rightarrow G$ defined by $\phi(a)=a^{n}$ for all $a \in G$.

Problem 2. (Herstein $\S 2.5 \# 6)$ Prove that if $\varphi: G \rightarrow G^{\prime}$ is a homomorphism, then $\varphi(G)$ (the image of $G)$, is a subgroup of G^{\prime}.

Problem 3. (From Herstein $\S 2.5 \# 7)$ Show that $\varphi: G \rightarrow G^{\prime}$ is a monomorphism if and only if $\operatorname{Ker}(\varphi)=\{e\}$.

Problem 4. (From Herstein $\S 2.5 \# 14$) If G is abelian and $\varphi: G \rightarrow G^{\prime}$ is a surjective homomorphism then G^{\prime} is abelian.

Problem 5. (From Herstein $\S 2.5 \# 24$ parts (a) and (e)) If G_{1}, G_{2} are two groups, let $G=G_{1} \times G_{2}$ be the Cartesian product of the sets G_{1} and G_{2}. Define a product in G by $\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right)=\left(a_{1} * a_{2}, b_{1} * b_{2}\right)$.

- Prove that G is a group.
- Prove that $G_{1} \times G_{2} \cong G_{2} \times G_{1}$.

Problem 6. (From Herstein $\S 2.5 \# 26$) If G is a group and $a \in G$, define $\sigma_{a}: G \rightarrow G$ by $\sigma_{a}(g)=a g a^{-1}$. We saw in Example 9 of this section that σ_{a} is an isomorphism of G onto itself, so $\sigma_{a} \in A(G)$, the group all 1-1 mappings of G (as a set) onto itself. Define $\psi: G \rightarrow A(G)$ by $\psi(a)=\sigma_{a}$ for all $a \in G$. Prove that:

- ψ is a homomorphism of G into $A(G)$.
- $\operatorname{Ker}(\psi)=Z(G)$ (the center of G).

Problem 7. (From Herstein $\S 2.5 \# 27)$ If θ is an automorphism of G and $N \unlhd G$, prove that $\theta(N) \unlhd G$.
Problem 8. Prove that $S_{3} \cong D_{6}$. Challenge Problem(=not required): prove that any nonabelian group of order 6 is isomorphic to S_{3}.

Problem 9. Let $T \subset \mathbb{R}^{3}$ denote a regular tetrahedron centered at $(0,0,0) \in \mathbb{R}^{3}$. For example, you can choose the vertices of T to be at the coordinates $\{(1,1,-1),(1,-1,1),(-1,1,1),(-1,-1,-1)\}$.

A tetrahedron.
Define:
$\operatorname{Isom}(T)=\left\{A \in \mathrm{GL}_{3}(\mathbb{R}) \mid A(T)=T\right\}=($ matrices which give a bijection: $A: T \rightarrow T) \subset \mathrm{GL}_{3}(\mathbb{R})$.
Prove that $\operatorname{Isom}(T)$ is a group, compute its order. (You can use the following fact without proof: any matrix A which maps T bijectively onto T must send the vertices to the vertices.)

Problem 10. Prove that $\operatorname{Isom}(T) \cong S_{4}$.

