
MATH 100A Homework 4 Solutions

1. (a) Homomorphism. Ker(ϕ) = nZ = {nx | x ∈ Z}. Onto but not 1-1.

(b) Not a homomorphism unless G is abelian. This is becauseϕ(ab) = (ab)−1 = b−1a−1

which may not be equal toϕ(a)ϕ(b) = a−1b−1.

(c) Homomorphism. Ker(ϕ) = {e}. Onto and 1-1 (every element has a unique inverse).

(d) Homomorphism. Ker(ϕ) = R+ = {x ∈ R | x > 0}. Onto but not 1-1.

(e) Homomorphism. Ker(ϕ) = {x ∈ G | xn = e} (elements in G whose order divides

n). If (n, |G|) = 1, thenϕ is onto and 1-1. Otherwiseϕ is neither onto nor 1-1.

2. If x, y ∈ ϕ(G), then we can find xg, yg ∈ G such that ϕ(xg) = x and ϕ(yg) = y. Thus

xy = ϕ(xg)ϕ(yg) = ϕ(xgyg). Since G is a group, we have xgyg ∈ G and hence xy =

ϕ(xgyg) ∈ϕ(G). Similarly, we have x−1 = (ϕ(xg))−1 =ϕ(xg
−1) ∈ϕ(G) since xg

−1 ∈ G.

Finally, note that e =ϕ(e) ∈ϕ(G).

3. Suppose ϕ is an monomorphism. Then ϕ(x) = ϕ(y) ⇒ x = y. If x ∈ Ker(ϕ), we have

ϕ(x) = ϕ(e) = e which implies x = e. Hence Ker(ϕ) ⊂ {e} and since e ∈ Ker(ϕ), we

have Ker(ϕ) = {e}.

Suppose Ker(ϕ) = {e}. Let x, y ∈ G be such thatϕ(x) = ϕ(y). We haveϕ(x)ϕ(y)−1 = e

which impliesϕ(xy−1) = e. Since Ker(ϕ) = {e}, we have xy−1 = e which is equivalent

to x = y. Henceϕ is injective.

4. Let x′, y′ ∈ G′. Since ϕ is surjective, we can find x, y ∈ G such that ϕ(x) = x′ and

ϕ(y) = y′. Since G is abelian, we have xy = yx. Then

x′y′ =ϕ(x)ϕ(y) =ϕ(xy) =ϕ(yx) =ϕ(y)ϕ(x) = y′x′,

and hence G′ is abelian.

5. If (x1, y1), (x2, y2), (x3, y3) ∈ G1 × G2, then(
(x1, y1)(x2, y2)

)
(x3, y3) = (x1x2, y1y2)(x3, y3)

=
(
(x1x2)x3, (y1y2)y3

)
=

(
x1(x2x3), y1(y2y3)

)
= (x1, y1)(x2x3, y2y3)

= (x1, y1)
(
(x2, y2)(x3, y3)

)
,

so multiplication in G1 × G2 is associative. The identity is (e, f ) where e is the identity

in G1 and f is identity in G2 since (e, f )(x, y) = (ex, f y) = (x, y) and (x, y)(e, f ) =
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(xe, y f ) = (x, y) for any (x, y) ∈ G1 × G2. If (x, y) ∈ G1 × G2, then

(x−1, y−1)(x, y) = (x−1x, y−1y) = (e, f ) = (xx−1, yy−1) = (x, y)(x−1, y−1),

so (x, y)−1 = (x−1, y−1). Hence we conclude that G1 × G2 is a group under ∗.

Now defineϕ : G1 × G2 → G2 × G1 viaϕ(x, y) = (y, x). This is a homomorphism, since

ϕ
(
(x1, y1)(x2, y2)

)
=ϕ

(
(x1x2, y1y2)

)
= (y1y2, x1x2)

= (y1, x1)(y2, x2)

=ϕ
(
(x1, y1)

)
ϕ
(
(x2, y2)

)
for all x1, x2 ∈ G1 and y1, y2 ∈ G2. Each (y, x) ∈ G2 × G1 is the image of (x, y) underϕ,

soϕ is surjective. Also if (x, y) ∈ Ker(ϕ), thenϕ(x, y) = (y, x) = ( f , e), so (x, y) = (e, f )

is the identity element of G1 × G2, and hence Ker(ϕ) = {(e, f )}. Thereforeϕ is injective

by question 3. We conclude thatϕ is an isomorphism and hence G1 × G2
∼= G2 × G1.

6. Let g, h ∈ G. We need to prove thatψ(gh) = σgh is equal toψ(g) ◦ψ(h) = σg ◦σh. If x ∈ G

then σgh(x) = (gh)x(gh)−1 and

(σg ◦σh)(x) = σg(hxh−1) = g(hxh−1)g−1 = (gh)x(gh)−1.

Hence we conclude thatψ(gh) = σgh = σg ◦σh = ψ(g) ◦ψ(h), andψ is a homomorphism.

Now let g ∈ Ker(ψ). We have ψ(g) = σg = iG, the identity map on G. Hence for every

x ∈ G we have σg(x) = gxg−1 = x, which implies gx = xg. Therefore g ∈ Z(G) and

hence Ker(ψ) ⊂ Z(G). Conversely, let g ∈ Z(G). We have gx = xg for all x ∈ G. Hence

gxg−1 = σg(x) = x = iG(x) for every x ∈ X. Therefore g ∈ Ker(ψ). This shows that

Z(G) ⊂ Ker(ψ) and hence Ker(ψ) = Z(G).

7. Let n ∈ θ(N) and g ∈ G. We need to show that g−1ng ∈ θ(N). For this, set n′ := θ−1(n)

and g′ := θ−1(g), and note that g′−1n′g′ ∈ N (since n′ ∈ N and N E G). It follows that

g−1ng = θ(g′)−1θ(n′)θ(g′) = θ(g′−1n′g′) ∈ θ(N).

8. Pick a point v1 ∈ R2 fixed by s (for example v1 := (0, 1)). Also set v2 := r(v1) and

v3 := r(v2). The idea is that V := {v1, v2, v3} is the set of vertices of a triangle in the plane.

Since r has order 3, r(v3) = v1 and hence r(V) = V. Moreover

s(v2) = s(r(v1)) = (sr)(v1) = (r−1s)(v1) = r−1(v1) = v3
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and similarly s(v3) = v2. It follows that s(V) = V, and therefore g(V) = V for all g ∈ D6.

So if g ∈ D6, we can define its restriction r(g) : V → V (which just sends v 7→ g(v)). Note

that r(gh) = r(g)r(h) for all g, h ∈ D6; indeed

r(gh)(v) = (gh)(v) = g(h(v)) = g(r(h)(v)) = r(g)(r(h)(v)) = (r(g)r(h))(v)

for all v ∈ V. In particular r(g−1)r(g) = r(g−1g) = r(e) = e and similarly r(g)r(g−1) = e;

in other words r(g−1) is the inverse of r(g). Therefore r defines a function D6 → A(V),

which is a homomorphism by the above calculation.

To show that r is an isomorphism, it suffices to prove injectivity, because D6 and A(V) are

finite sets of the same size. If g ∈ Ker(r) then the restriction of g to V is the identity, so g

fixes v1 and v2. You can check that these two vectors give a basis for R2. Since the elements

of D6 are linear transformations (because r and s are), it follows that g fixes every vector

in R2. This shows that Ker(r) = {e}, as required.

It remains to prove that A(V) ∼= S3. For this, define f : {1, 2, 3} → V by f (i) = vi. I hope

it is clear that f is a bijection. Next, we can define ϕ : S3 → A(V) by ϕ(x) = f−1x f . If

x, y ∈ S3 then

ϕ(xy) = f−1xy f = f−1x f f−1x f =ϕ(x)ϕ(y),

so ϕ is a homomorphism. It is bijective because it has an inverse given by g 7→ f g f−1.

Thereforeϕ is an isomorphism, so D6
∼= A(V) ∼= S3.

For the challenge problem, let G be a nonabelian group of order 6. By Lagrange’s theorem,

elements of G can have orders 1, 2, 3 and 6. If g ∈ G has order 6, then 〈g〉 is a subgroup of

G with order 6, so 〈g〉 = G, contradicting the assumption that G is nonabelian. Therefore

G only has elements of orders 1, 2 and 3. The set {g ∈ G | o(g) = 3} can be partitioned

into subsets of the form {g, g−1} (with g 6= g−1) so G has an even number of elements of

order 3, i.e. either 0, 2, 4 or 6. It cannot have 6 because o(e) = 1, and it cannot have 0 by

Problem 2 on Homework 2 (if g2 = e for all g ∈ G, then G is abelian).

Next, let g, h ∈ G have orders 2 and 3 respectively. Suppose for a contradiction that

gh = hg. Since C(g) contains g and h, both 2 and 3 divide |C(g)| by Lagrange’s theorem.

Therefore C(g) = G, and similarly C(h) = G. Given any g′ ∈ G of order 2, it follows that

g′h = hg′, and the same argument shows that C(g′) = G. Similarly C(h′) = G for any

h′ ∈ G of order 3. Therefore every element of G is central, which is impossible because G

is nonabelian. The upshot is that gh 6= hg, or equivalently h−1gh 6= g. This shows that G

has at least two elements of order 2 (namely g and h−1gh), so it cannot have 4 of order 3.

Therefore G has 3 elements of order 2 and 2 of order 3.
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Let T := {g ∈ G | o(g) = 2}. As above we can easily show that A(T) ∼= S3. Each g ∈ G

defines a functionϕ(g) : T → T by sending t 7→ gtg−1. If g, h ∈ G then

ϕ(gh)(t) = ght(gh)−1 = ghth−1g−1 = gϕ(h)(t)g−1 =ϕ(g)(ϕ(h)(t)) = (ϕ(g)ϕ(h))(t)

for all t ∈ T, so ϕ(gh) = ϕ(g)ϕ(h). It follows that ϕ(g−1) is the inverse of ϕ(g), and

in partcular ϕ defines a function G → A(T). The above calculation shows that ϕ is a

homomorphism. As above it remains to show thatϕ is injective. For this, let g ∈ Ker(ϕ).

Sinceϕ(g) is the identity function T → T, g commutes with every element of T. In other

words T ⊆ C(g), which implies that |C(g)| ≥ 4 (since e ∈ C(g) also). Therefore g is

central by Lagrange’s theorem. This forces g = e, because the elements of order 2 do not

commute with those of order 3, and vice versa.

9 & 10. We will tackle these at the same time, because if Isom(T) ∼= S4 then |Isom(T)| = 24. The

3 × 3 identity matrix obviously belongs to Isom(T). Moreover, if B, C ∈ Isom(T) then

B and C give bijections T → T, so BC and B−1 also give bijections T → T, and hence

BC, B−1 ∈ Isom(T). Thus Isom(T) ≤ GL3(R), and in particular Isom(T) is a group.

Let V = {v1, v2, v3, v4} be the set of vertices of T. The second paragraph of Problem 8

(with some minor adjustments) shows that the restriction map r : Isom(T) → A(V) is

a homomorphism. It is injective by another similar argument: any three vertices give a

basis for R3, and the elements of Isom(T) are literally matrices this time. To check that any

three vertices give a basis, it might be easiest to check the first three directly, then express

all four in that basis. Since v1 + v2 + v3 + v4 = 0 you will get {e1, e2, e3, (−1,−1,−1)},
where ei is the ith standard basis vector (the ith column of the 3× 3 identity matrix). This

set is a bit easier to deal with.

To prove that r is onto, we have to do some work (because |Isom(T)| is unknown). For

each f ∈ A(V) let M f be the 3× 3 matrix with columns f (v1), f (v2) and f (v3). Since any

three vertices give a basis for R3, these matrices are all invertible. By definition M f ei =

f (vi), and hence M f M−1
e vi = f (vi), for each i ∈ {1, 2, 3}. It follows that

M f M−1
e v4 = M f M−1

e (−v1 − v2 − v3) = − f (v1)− f (v2)− f (v3) = f (v4)

(the last step follows from the formula v1 + v2 + v3 + v4 = 0 and the fact that f is bijective).

This shows that r(M f M−1
e ) = f , if you are willing to accept that M f M−1

e ∈ Isom(T). To

prove this, note that T is the convex hull of V, which means it is the set of convex linear

combinations of elements of V. A linear combination ∑
4
i=1 aivi is convex provided that the

coefficients are nonnegative and add up to 1. So if t ∈ T then t = ∑
4
i=1 aivi for some ai ≥ 0

with ∑
4
i=1 ai = 1, and hence M f M−1

e t = ∑
4
i=1 ai M f M−1

e vi = ∑
4
i=1 ai f (vi) ∈ T.
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