1. (a) Homomorphism. $\operatorname{Ker}(\varphi)=n \mathbb{Z}=\{n x \mid x \in \mathbb{Z}\}$. Onto but not 1-1.
(b) Not a homomorphism unless G is abelian. This is because $\varphi(a b)=(a b)^{-1}=b^{-1} a^{-1}$ which may not be equal to $\varphi(a) \varphi(b)=a^{-1} b^{-1}$.
(c) Homomorphism. $\operatorname{Ker}(\varphi)=\{e\}$. Onto and 1-1 (every element has a unique inverse).
(d) Homomorphism. $\operatorname{Ker}(\varphi)=\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x>0\}$. Onto but not 1-1.
(e) Homomorphism. $\operatorname{Ker}(\varphi)=\left\{x \in G \mid x^{n}=e\right\}$ (elements in G whose order divides $n)$. If $(n,|G|)=1$, then φ is onto and 1-1. Otherwise φ is neither onto nor 1-1.
2. If $x, y \in \varphi(G)$, then we can find $x_{g}, y_{g} \in G$ such that $\varphi\left(x_{g}\right)=x$ and $\varphi\left(y_{g}\right)=y$. Thus $x y=\varphi\left(x_{g}\right) \varphi\left(y_{g}\right)=\varphi\left(x_{g} y_{g}\right)$. Since G is a group, we have $x_{g} y_{g} \in G$ and hence $x y=$ $\varphi\left(x_{g} y_{g}\right) \in \varphi(G)$. Similarly, we have $x^{-1}=\left(\varphi\left(x_{g}\right)\right)^{-1}=\varphi\left(x_{g}{ }^{-1}\right) \in \varphi(G)$ since $x_{g}{ }^{-1} \in G$. Finally, note that $e=\varphi(e) \in \varphi(G)$.
3. Suppose φ is an monomorphism. Then $\varphi(x)=\varphi(y) \Rightarrow x=y$. If $x \in \operatorname{Ker}(\varphi)$, we have $\varphi(x)=\varphi(e)=e$ which implies $x=e$. Hence $\operatorname{Ker}(\varphi) \subset\{e\}$ and since $e \in \operatorname{Ker}(\varphi)$, we have $\operatorname{Ker}(\varphi)=\{e\}$.

Suppose $\operatorname{Ker}(\varphi)=\{e\}$. Let $x, y \in G$ be such that $\varphi(x)=\varphi(y)$. We have $\varphi(x) \varphi(y)^{-1}=e$ which implies $\varphi\left(x y^{-1}\right)=e$. Since $\operatorname{Ker}(\varphi)=\{e\}$, we have $x y^{-1}=e$ which is equivalent to $x=y$. Hence φ is injective.
4. Let $x^{\prime}, y^{\prime} \in G^{\prime}$. Since φ is surjective, we can find $x, y \in G$ such that $\varphi(x)=x^{\prime}$ and $\varphi(y)=y^{\prime}$. Since G is abelian, we have $x y=y x$. Then

$$
x^{\prime} y^{\prime}=\varphi(x) \varphi(y)=\varphi(x y)=\varphi(y x)=\varphi(y) \varphi(x)=y^{\prime} x^{\prime}
$$

and hence G^{\prime} is abelian.
5. If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in G_{1} \times G_{2}$, then

$$
\begin{aligned}
\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right)\left(x_{3}, y_{3}\right) & =\left(x_{1} x_{2}, y_{1} y_{2}\right)\left(x_{3}, y_{3}\right) \\
& =\left(\left(x_{1} x_{2}\right) x_{3},\left(y_{1} y_{2}\right) y_{3}\right) \\
& =\left(x_{1}\left(x_{2} x_{3}\right), y_{1}\left(y_{2} y_{3}\right)\right) \\
& =\left(x_{1}, y_{1}\right)\left(x_{2} x_{3}, y_{2} y_{3}\right) \\
& =\left(x_{1}, y_{1}\right)\left(\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right)\right)
\end{aligned}
$$

so multiplication in $G_{1} \times G_{2}$ is associative. The identity is (e, f) where e is the identity in G_{1} and f is identity in G_{2} since $(e, f)(x, y)=(e x, f y)=(x, y)$ and $(x, y)(e, f)=$
$(x e, y f)=(x, y)$ for any $(x, y) \in G_{1} \times G_{2}$. If $(x, y) \in G_{1} \times G_{2}$, then

$$
\left(x^{-1}, y^{-1}\right)(x, y)=\left(x^{-1} x, y^{-1} y\right)=(e, f)=\left(x x^{-1}, y y^{-1}\right)=(x, y)\left(x^{-1}, y^{-1}\right)
$$

so $(x, y)^{-1}=\left(x^{-1}, y^{-1}\right)$. Hence we conclude that $G_{1} \times G_{2}$ is a group under $*$.
Now define $\varphi: G_{1} \times G_{2} \rightarrow G_{2} \times G_{1}$ via $\varphi(x, y)=(y, x)$. This is a homomorphism, since

$$
\begin{aligned}
\varphi\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right) & =\varphi\left(\left(x_{1} x_{2}, y_{1} y_{2}\right)\right) \\
& =\left(y_{1} y_{2}, x_{1} x_{2}\right) \\
& =\left(y_{1}, x_{1}\right)\left(y_{2}, x_{2}\right) \\
& =\varphi\left(\left(x_{1}, y_{1}\right)\right) \varphi\left(\left(x_{2}, y_{2}\right)\right)
\end{aligned}
$$

for all $x_{1}, x_{2} \in G_{1}$ and $y_{1}, y_{2} \in G_{2}$. Each $(y, x) \in G_{2} \times G_{1}$ is the image of (x, y) under φ, so φ is surjective. Also if $(x, y) \in \operatorname{Ker}(\varphi)$, then $\varphi(x, y)=(y, x)=(f, e)$, so $(x, y)=(e, f)$ is the identity element of $G_{1} \times G_{2}$, and hence $\operatorname{Ker}(\varphi)=\{(e, f)\}$. Therefore φ is injective by question 3 . We conclude that φ is an isomorphism and hence $G_{1} \times G_{2} \cong G_{2} \times G_{1}$.
6. Let $g, h \in G$. We need to prove that $\psi(g h)=\sigma_{g h}$ is equal to $\psi(g) \circ \psi(h)=\sigma_{g} \circ \sigma_{h}$. If $x \in G$ then $\sigma_{g h}(x)=(g h) x(g h)^{-1}$ and

$$
\left(\sigma_{g} \circ \sigma_{h}\right)(x)=\sigma_{g}\left(h x h^{-1}\right)=g\left(h x h^{-1}\right) g^{-1}=(g h) x(g h)^{-1} .
$$

Hence we conclude that $\psi(g h)=\sigma_{g h}=\sigma_{g} \circ \sigma_{h}=\psi(g) \circ \psi(h)$, and ψ is a homomorphism. Now let $g \in \operatorname{Ker}(\psi)$. We have $\psi(g)=\sigma_{g}=i_{G}$, the identity map on G. Hence for every $x \in G$ we have $\sigma_{g}(x)=g x g^{-1}=x$, which implies $g x=x g$. Therefore $g \in Z(G)$ and hence $\operatorname{Ker}(\psi) \subset Z(G)$. Conversely, let $g \in Z(G)$. We have $g x=x g$ for all $x \in G$. Hence $g x g^{-1}=\sigma_{g}(x)=x=i_{G}(x)$ for every $x \in X$. Therefore $g \in \operatorname{Ker}(\psi)$. This shows that $Z(G) \subset \operatorname{Ker}(\psi)$ and hence $\operatorname{Ker}(\psi)=Z(G)$.
7. Let $n \in \theta(N)$ and $g \in G$. We need to show that $g^{-1} n g \in \theta(N)$. For this, set $n^{\prime}:=\theta^{-1}(n)$ and $g^{\prime}:=\theta^{-1}(g)$, and note that $g^{\prime-1} n^{\prime} g^{\prime} \in N$ (since $n^{\prime} \in N$ and $N \unlhd G$). It follows that

$$
g^{-1} n g=\theta\left(g^{\prime}\right)^{-1} \theta\left(n^{\prime}\right) \theta\left(g^{\prime}\right)=\theta\left(g^{\prime-1} n^{\prime} g^{\prime}\right) \in \theta(N)
$$

8. Pick a point $v_{1} \in \mathbb{R}^{2}$ fixed by s (for example $v_{1}:=(0,1)$). Also set $v_{2}:=r\left(v_{1}\right)$ and $v_{3}:=r\left(v_{2}\right)$. The idea is that $V:=\left\{v_{1}, v_{2}, v_{3}\right\}$ is the set of vertices of a triangle in the plane. Since r has order $3, r\left(v_{3}\right)=v_{1}$ and hence $r(V)=V$. Moreover

$$
s\left(v_{2}\right)=s\left(r\left(v_{1}\right)\right)=(s r)\left(v_{1}\right)=\left(r^{-1} s\right)\left(v_{1}\right)=r^{-1}\left(v_{1}\right)=v_{3}
$$

and similarly $s\left(v_{3}\right)=v_{2}$. It follows that $s(V)=V$, and therefore $g(V)=V$ for all $g \in D_{6}$. So if $g \in D_{6}$, we can define its restriction $r(g): V \rightarrow V$ (which just sends $v \mapsto g(v)$). Note that $r(g h)=r(g) r(h)$ for all $g, h \in D_{6}$; indeed

$$
r(g h)(v)=(g h)(v)=g(h(v))=g(r(h)(v))=r(g)(r(h)(v))=(r(g) r(h))(v)
$$

for all $v \in V$. In particular $r\left(g^{-1}\right) r(g)=r\left(g^{-1} g\right)=r(e)=e$ and similarly $r(g) r\left(g^{-1}\right)=e$; in other words $r\left(g^{-1}\right)$ is the inverse of $r(g)$. Therefore r defines a function $D_{6} \rightarrow A(V)$, which is a homomorphism by the above calculation.

To show that r is an isomorphism, it suffices to prove injectivity, because D_{6} and $A(V)$ are finite sets of the same size. If $g \in \operatorname{Ker}(r)$ then the restriction of g to V is the identity, so g fixes v_{1} and v_{2}. You can check that these two vectors give a basis for \mathbb{R}^{2}. Since the elements of D_{6} are linear transformations (because r and s are), it follows that g fixes every vector in \mathbb{R}^{2}. This shows that $\operatorname{Ker}(r)=\{e\}$, as required.

It remains to prove that $A(V) \cong S_{3}$. For this, define $f:\{1,2,3\} \rightarrow V$ by $f(i)=v_{i}$. I hope it is clear that f is a bijection. Next, we can define $\varphi: S_{3} \rightarrow A(V)$ by $\varphi(x)=f^{-1} x f$. If $x, y \in S_{3}$ then

$$
\varphi(x y)=f^{-1} x y f=f^{-1} x f f^{-1} x f=\varphi(x) \varphi(y)
$$

so φ is a homomorphism. It is bijective because it has an inverse given by $g \mapsto f g f^{-1}$. Therefore φ is an isomorphism, so $D_{6} \cong A(V) \cong S_{3}$.

For the challenge problem, let G be a nonabelian group of order 6. By Lagrange's theorem, elements of G can have orders $1,2,3$ and 6 . If $g \in G$ has order 6 , then $\langle g\rangle$ is a subgroup of G with order 6 , so $\langle g\rangle=G$, contradicting the assumption that G is nonabelian. Therefore G only has elements of orders 1,2 and 3 . The set $\{g \in G \mid o(g)=3\}$ can be partitioned into subsets of the form $\left\{g, g^{-1}\right\}$ (with $g \neq g^{-1}$) so G has an even number of elements of order 3, i.e. either $0,2,4$ or 6 . It cannot have 6 because $o(e)=1$, and it cannot have 0 by Problem 2 on Homework 2 (if $g^{2}=e$ for all $g \in G$, then G is abelian).

Next, let $g, h \in G$ have orders 2 and 3 respectively. Suppose for a contradiction that $g h=h g$. Since $C(g)$ contains g and h, both 2 and 3 divide $|C(g)|$ by Lagrange's theorem. Therefore $C(g)=G$, and similarly $C(h)=G$. Given any $g^{\prime} \in G$ of order 2 , it follows that $g^{\prime} h=h g^{\prime}$, and the same argument shows that $C\left(g^{\prime}\right)=G$. Similarly $C\left(h^{\prime}\right)=G$ for any $h^{\prime} \in G$ of order 3. Therefore every element of G is central, which is impossible because G is nonabelian. The upshot is that $g h \neq h g$, or equivalently $h^{-1} g h \neq g$. This shows that G has at least two elements of order 2 (namely g and $h^{-1} g h$), so it cannot have 4 of order 3 . Therefore G has 3 elements of order 2 and 2 of order 3 .

Let $T:=\{g \in G \mid o(g)=2\}$. As above we can easily show that $A(T) \cong S_{3}$. Each $g \in G$ defines a function $\varphi(g): T \rightarrow T$ by sending $t \mapsto g t g^{-1}$. If $g, h \in G$ then

$$
\varphi(g h)(t)=g h t(g h)^{-1}=g h t h^{-1} g^{-1}=g \varphi(h)(t) g^{-1}=\varphi(g)(\varphi(h)(t))=(\varphi(g) \varphi(h))(t)
$$

for all $t \in T$, so $\varphi(g h)=\varphi(g) \varphi(h)$. It follows that $\varphi\left(g^{-1}\right)$ is the inverse of $\varphi(g)$, and in partcular φ defines a function $G \rightarrow A(T)$. The above calculation shows that φ is a homomorphism. As above it remains to show that φ is injective. For this, let $g \in \operatorname{Ker}(\varphi)$. Since $\varphi(g)$ is the identity function $T \rightarrow T, g$ commutes with every element of T. In other words $T \subseteq C(g)$, which implies that $|C(g)| \geq 4$ (since $e \in C(g)$ also). Therefore g is central by Lagrange's theorem. This forces $g=e$, because the elements of order 2 do not commute with those of order 3 , and vice versa.
$9 \& 10$. We will tackle these at the same time, because if $\operatorname{Isom}(T) \cong S_{4}$ then $|\operatorname{Isom}(T)|=24$. The 3×3 identity matrix obviously belongs to $\operatorname{Isom}(T)$. Moreover, if $B, C \in \operatorname{Isom}(T)$ then B and C give bijections $T \rightarrow T$, so $B C$ and B^{-1} also give bijections $T \rightarrow T$, and hence $B C, B^{-1} \in \operatorname{Isom}(T)$. Thus $\operatorname{Isom}(T) \leq \mathrm{GL}_{3}(\mathbb{R})$, and in particular $\operatorname{Isom}(T)$ is a group.

Let $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be the set of vertices of T. The second paragraph of Problem 8 (with some minor adjustments) shows that the restriction map r : $\operatorname{Isom}(T) \rightarrow A(V)$ is a homomorphism. It is injective by another similar argument: any three vertices give a basis for \mathbb{R}^{3}, and the elements of $\operatorname{Isom}(T)$ are literally matrices this time. To check that any three vertices give a basis, it might be easiest to check the first three directly, then express all four in that basis. Since $v_{1}+v_{2}+v_{3}+v_{4}=0$ you will get $\left\{e_{1}, e_{2}, e_{3},(-1,-1,-1)\right\}$, where e_{i} is the i th standard basis vector (the i th column of the 3×3 identity matrix). This set is a bit easier to deal with.

To prove that r is onto, we have to do some work (because $|\operatorname{Isom}(T)|$ is unknown). For each $f \in A(V)$ let M_{f} be the 3×3 matrix with columns $f\left(v_{1}\right), f\left(v_{2}\right)$ and $f\left(v_{3}\right)$. Since any three vertices give a basis for \mathbb{R}^{3}, these matrices are all invertible. By definition $M_{f} e_{i}=$ $f\left(v_{i}\right)$, and hence $M_{f} M_{e}^{-1} v_{i}=f\left(v_{i}\right)$, for each $i \in\{1,2,3\}$. It follows that

$$
M_{f} M_{e}^{-1} v_{4}=M_{f} M_{e}^{-1}\left(-v_{1}-v_{2}-v_{3}\right)=-f\left(v_{1}\right)-f\left(v_{2}\right)-f\left(v_{3}\right)=f\left(v_{4}\right)
$$

(the last step follows from the formula $v_{1}+v_{2}+v_{3}+v_{4}=0$ and the fact that f is bijective). This shows that $r\left(M_{f} M_{e}^{-1}\right)=f$, if you are willing to accept that $M_{f} M_{e}^{-1} \in \operatorname{Isom}(T)$. To prove this, note that T is the convex hull of V, which means it is the set of convex linear combinations of elements of V. A linear combination $\sum_{i=1}^{4} a_{i} v_{i}$ is convex provided that the coefficients are nonnegative and add up to 1 . So if $t \in T$ then $t=\sum_{i=1}^{4} a_{i} v_{i}$ for some $a_{i} \geq 0$ with $\sum_{i=1}^{4} a_{i}=1$, and hence $M_{f} M_{e}^{-1} t=\sum_{i=1}^{4} a_{i} M_{f} M_{e}^{-1} v_{i}=\sum_{i=1}^{4} a_{i} f\left(v_{i}\right) \in T$.

