- 1. (a) Homomorphism. Ker(φ) = $n\mathbb{Z} = \{nx \mid x \in \mathbb{Z}\}$. Onto but not 1-1.
 - (b) Not a homomorphism unless *G* is abelian. This is because $\varphi(ab) = (ab)^{-1} = b^{-1}a^{-1}$ which may not be equal to $\varphi(a)\varphi(b) = a^{-1}b^{-1}$.
 - (c) Homomorphism. Ker(φ) = {*e*}. Onto and 1-1 (every element has a unique inverse).
 - (d) Homomorphism. Ker(φ) = $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$. Onto but not 1-1.
 - (e) Homomorphism. Ker(φ) = { $x \in G | x^n = e$ } (elements in *G* whose order divides *n*). If (n, |G|) = 1, then φ is onto and 1-1. Otherwise φ is neither onto nor 1-1.
- 2. If $x, y \in \varphi(G)$, then we can find $x_g, y_g \in G$ such that $\varphi(x_g) = x$ and $\varphi(y_g) = y$. Thus $xy = \varphi(x_g)\varphi(y_g) = \varphi(x_gy_g)$. Since *G* is a group, we have $x_gy_g \in G$ and hence $xy = \varphi(x_gy_g) \in \varphi(G)$. Similarly, we have $x^{-1} = (\varphi(x_g))^{-1} = \varphi(x_g^{-1}) \in \varphi(G)$ since $x_g^{-1} \in G$. Finally, note that $e = \varphi(e) \in \varphi(G)$.
- 3. Suppose φ is an monomorphism. Then $\varphi(x) = \varphi(y) \Rightarrow x = y$. If $x \in \text{Ker}(\varphi)$, we have $\varphi(x) = \varphi(e) = e$ which implies x = e. Hence $\text{Ker}(\varphi) \subset \{e\}$ and since $e \in \text{Ker}(\varphi)$, we have $\text{Ker}(\varphi) = \{e\}$.

Suppose Ker(φ) = {*e*}. Let $x, y \in G$ be such that $\varphi(x) = \varphi(y)$. We have $\varphi(x)\varphi(y)^{-1} = e$ which implies $\varphi(xy^{-1}) = e$. Since Ker(φ) = {*e*}, we have $xy^{-1} = e$ which is equivalent to x = y. Hence φ is injective.

4. Let $x', y' \in G'$. Since φ is surjective, we can find $x, y \in G$ such that $\varphi(x) = x'$ and $\varphi(y) = y'$. Since *G* is abelian, we have xy = yx. Then

$$x'y' = \varphi(x)\varphi(y) = \varphi(xy) = \varphi(yx) = \varphi(y)\varphi(x) = y'x',$$

and hence G' is abelian.

5. If $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in G_1 \times G_2$, then

$$((x_1, y_1)(x_2, y_2))(x_3, y_3) = (x_1 x_2, y_1 y_2)(x_3, y_3) = ((x_1 x_2) x_3, (y_1 y_2) y_3) = (x_1 (x_2 x_3), y_1 (y_2 y_3)) = (x_1, y_1)(x_2 x_3, y_2 y_3) = (x_1, y_1)((x_2, y_2)(x_3, y_3))$$

so multiplication in $G_1 \times G_2$ is associative. The identity is (e, f) where e is the identity in G_1 and f is identity in G_2 since (e, f)(x, y) = (ex, fy) = (x, y) and (x, y)(e, f) =

),

(xe, yf) = (x, y) for any $(x, y) \in G_1 \times G_2$. If $(x, y) \in G_1 \times G_2$, then

$$(x^{-1}, y^{-1})(x, y) = (x^{-1}x, y^{-1}y) = (e, f) = (xx^{-1}, yy^{-1}) = (x, y)(x^{-1}, y^{-1}),$$

so $(x, y)^{-1} = (x^{-1}, y^{-1})$. Hence we conclude that $G_1 \times G_2$ is a group under *.

Now define φ : $G_1 \times G_2 \to G_2 \times G_1$ via $\varphi(x, y) = (y, x)$. This is a homomorphism, since

$$\varphi((x_1, y_1)(x_2, y_2)) = \varphi((x_1 x_2, y_1 y_2))$$

= $(y_1 y_2, x_1 x_2)$
= $(y_1, x_1)(y_2, x_2)$
= $\varphi((x_1, y_1))\varphi((x_2, y_2))$

for all $x_1, x_2 \in G_1$ and $y_1, y_2 \in G_2$. Each $(y, x) \in G_2 \times G_1$ is the image of (x, y) under φ , so φ is surjective. Also if $(x, y) \in \text{Ker}(\varphi)$, then $\varphi(x, y) = (y, x) = (f, e)$, so (x, y) = (e, f)is the identity element of $G_1 \times G_2$, and hence $\text{Ker}(\varphi) = \{(e, f)\}$. Therefore φ is injective by question 3. We conclude that φ is an isomorphism and hence $G_1 \times G_2 \cong G_2 \times G_1$.

6. Let $g, h \in G$. We need to prove that $\psi(gh) = \sigma_{gh}$ is equal to $\psi(g) \circ \psi(h) = \sigma_g \circ \sigma_h$. If $x \in G$ then $\sigma_{gh}(x) = (gh)x(gh)^{-1}$ and

$$(\sigma_g \circ \sigma_h)(x) = \sigma_g(hxh^{-1}) = g(hxh^{-1})g^{-1} = (gh)x(gh)^{-1}$$

Hence we conclude that $\psi(gh) = \sigma_{gh} = \sigma_g \circ \sigma_h = \psi(g) \circ \psi(h)$, and ψ is a homomorphism.

Now let $g \in \text{Ker}(\psi)$. We have $\psi(g) = \sigma_g = i_G$, the identity map on G. Hence for every $x \in G$ we have $\sigma_g(x) = gxg^{-1} = x$, which implies gx = xg. Therefore $g \in Z(G)$ and hence $\text{Ker}(\psi) \subset Z(G)$. Conversely, let $g \in Z(G)$. We have gx = xg for all $x \in G$. Hence $gxg^{-1} = \sigma_g(x) = x = i_G(x)$ for every $x \in X$. Therefore $g \in \text{Ker}(\psi)$. This shows that $Z(G) \subset \text{Ker}(\psi)$ and hence $\text{Ker}(\psi) = Z(G)$.

7. Let $n \in \theta(N)$ and $g \in G$. We need to show that $g^{-1}ng \in \theta(N)$. For this, set $n' \coloneqq \theta^{-1}(n)$ and $g' \coloneqq \theta^{-1}(g)$, and note that $g'^{-1}n'g' \in N$ (since $n' \in N$ and $N \leq G$). It follows that

$$g^{-1}ng = \theta(g')^{-1}\theta(n')\theta(g') = \theta(g'^{-1}n'g') \in \theta(N).$$

8. Pick a point $v_1 \in \mathbb{R}^2$ fixed by *s* (for example $v_1 \coloneqq (0,1)$). Also set $v_2 \coloneqq r(v_1)$ and $v_3 \coloneqq r(v_2)$. The idea is that $V \coloneqq \{v_1, v_2, v_3\}$ is the set of vertices of a triangle in the plane. Since *r* has order 3, $r(v_3) = v_1$ and hence r(V) = V. Moreover

$$s(v_2) = s(r(v_1)) = (sr)(v_1) = (r^{-1}s)(v_1) = r^{-1}(v_1) = v_3$$

and similarly $s(v_3) = v_2$. It follows that s(V) = V, and therefore g(V) = V for all $g \in D_6$. So if $g \in D_6$, we can define its restriction $r(g) : V \to V$ (which just sends $v \mapsto g(v)$). Note that r(gh) = r(g)r(h) for all $g, h \in D_6$; indeed

$$r(gh)(v) = (gh)(v) = g(h(v)) = g(r(h)(v)) = r(g)(r(h)(v)) = (r(g)r(h))(v)$$

for all $v \in V$. In particular $r(g^{-1})r(g) = r(g^{-1}g) = r(e) = e$ and similarly $r(g)r(g^{-1}) = e$; in other words $r(g^{-1})$ is the inverse of r(g). Therefore r defines a function $D_6 \to A(V)$, which is a homomorphism by the above calculation.

To show that r is an isomorphism, it suffices to prove injectivity, because D_6 and A(V) are finite sets of the same size. If $g \in \text{Ker}(r)$ then the restriction of g to V is the identity, so gfixes v_1 and v_2 . You can check that these two vectors give a basis for \mathbb{R}^2 . Since the elements of D_6 are linear transformations (because r and s are), it follows that g fixes every vector in \mathbb{R}^2 . This shows that $\text{Ker}(r) = \{e\}$, as required.

It remains to prove that $A(V) \cong S_3$. For this, define $f : \{1, 2, 3\} \to V$ by $f(i) = v_i$. I hope it is clear that f is a bijection. Next, we can define $\varphi : S_3 \to A(V)$ by $\varphi(x) = f^{-1}xf$. If $x, y \in S_3$ then

$$\varphi(xy) = f^{-1}xyf = f^{-1}xff^{-1}xf = \varphi(x)\varphi(y),$$

so φ is a homomorphism. It is bijective because it has an inverse given by $g \mapsto fgf^{-1}$. Therefore φ is an isomorphism, so $D_6 \cong A(V) \cong S_3$.

For the challenge problem, let *G* be a nonabelian group of order 6. By Lagrange's theorem, elements of *G* can have orders 1, 2, 3 and 6. If $g \in G$ has order 6, then $\langle g \rangle$ is a subgroup of *G* with order 6, so $\langle g \rangle = G$, contradicting the assumption that *G* is nonabelian. Therefore *G* only has elements of orders 1, 2 and 3. The set $\{g \in G \mid o(g) = 3\}$ can be partitioned into subsets of the form $\{g, g^{-1}\}$ (with $g \neq g^{-1}$) so *G* has an even number of elements of order 3, i.e. either 0, 2, 4 or 6. It cannot have 6 because o(e) = 1, and it cannot have 0 by Problem 2 on Homework 2 (if $g^2 = e$ for all $g \in G$, then *G* is abelian).

Next, let $g,h \in G$ have orders 2 and 3 respectively. Suppose for a contradiction that gh = hg. Since C(g) contains g and h, both 2 and 3 divide |C(g)| by Lagrange's theorem. Therefore C(g) = G, and similarly C(h) = G. Given any $g' \in G$ of order 2, it follows that g'h = hg', and the same argument shows that C(g') = G. Similarly C(h') = G for any $h' \in G$ of order 3. Therefore every element of G is central, which is impossible because G is nonabelian. The upshot is that $gh \neq hg$, or equivalently $h^{-1}gh \neq g$. This shows that G has at least two elements of order 2 (namely g and $h^{-1}gh$), so it cannot have 4 of order 3. Therefore G has 3 elements of order 2 and 2 of order 3. Let $T := \{g \in G \mid o(g) = 2\}$. As above we can easily show that $A(T) \cong S_3$. Each $g \in G$ defines a function $\varphi(g) : T \to T$ by sending $t \mapsto gtg^{-1}$. If $g, h \in G$ then

$$\varphi(gh)(t) = ght(gh)^{-1} = ghth^{-1}g^{-1} = g\varphi(h)(t)g^{-1} = \varphi(g)(\varphi(h)(t)) = (\varphi(g)\varphi(h))(t)$$

for all $t \in T$, so $\varphi(gh) = \varphi(g)\varphi(h)$. It follows that $\varphi(g^{-1})$ is the inverse of $\varphi(g)$, and in partcular φ defines a function $G \to A(T)$. The above calculation shows that φ is a homomorphism. As above it remains to show that φ is injective. For this, let $g \in \text{Ker}(\varphi)$. Since $\varphi(g)$ is the identity function $T \to T$, g commutes with every element of T. In other words $T \subseteq C(g)$, which implies that $|C(g)| \ge 4$ (since $e \in C(g)$ also). Therefore g is central by Lagrange's theorem. This forces g = e, because the elements of order 2 do not commute with those of order 3, and vice versa.

9 & 10. We will tackle these at the same time, because if $\text{Isom}(T) \cong S_4$ then |Isom(T)| = 24. The 3×3 identity matrix obviously belongs to Isom(T). Moreover, if $B, C \in \text{Isom}(T)$ then B and C give bijections $T \to T$, so BC and B^{-1} also give bijections $T \to T$, and hence $BC, B^{-1} \in \text{Isom}(T)$. Thus $\text{Isom}(T) \leq \text{GL}_3(\mathbb{R})$, and in particular Isom(T) is a group.

Let $V = \{v_1, v_2, v_3, v_4\}$ be the set of vertices of *T*. The second paragraph of Problem 8 (with some minor adjustments) shows that the restriction map $r : \text{Isom}(T) \to A(V)$ is a homomorphism. It is injective by another similar argument: any three vertices give a basis for \mathbb{R}^3 , and the elements of Isom(T) are literally matrices this time. To check that any three vertices give a basis, it might be easiest to check the first three directly, then express all four in that basis. Since $v_1 + v_2 + v_3 + v_4 = 0$ you will get $\{e_1, e_2, e_3, (-1, -1, -1)\}$, where e_i is the *i*th standard basis vector (the *i*th column of the 3×3 identity matrix). This set is a bit easier to deal with.

To prove that *r* is onto, we have to do some work (because |Isom(T)| is unknown). For each $f \in A(V)$ let M_f be the 3 × 3 matrix with columns $f(v_1)$, $f(v_2)$ and $f(v_3)$. Since any three vertices give a basis for \mathbb{R}^3 , these matrices are all invertible. By definition $M_f e_i = f(v_i)$, and hence $M_f M_e^{-1} v_i = f(v_i)$, for each $i \in \{1, 2, 3\}$. It follows that

$$M_f M_e^{-1} v_4 = M_f M_e^{-1} (-v_1 - v_2 - v_3) = -f(v_1) - f(v_2) - f(v_3) = f(v_4)$$

(the last step follows from the formula $v_1 + v_2 + v_3 + v_4 = 0$ and the fact that f is bijective). This shows that $r(M_f M_e^{-1}) = f$, if you are willing to accept that $M_f M_e^{-1} \in \text{Isom}(T)$. To prove this, note that T is the *convex hull* of V, which means it is the set of *convex* linear combinations of elements of V. A linear combination $\sum_{i=1}^4 a_i v_i$ is convex provided that the coefficients are nonnegative and add up to 1. So if $t \in T$ then $t = \sum_{i=1}^4 a_i v_i$ for some $a_i \ge 0$ with $\sum_{i=1}^4 a_i = 1$, and hence $M_f M_e^{-1} t = \sum_{i=1}^4 a_i M_f M_e^{-1} v_i = \sum_{i=1}^4 a_i f(v_i) \in T$.