MATH 100A Homework 4 Solutions

1. (a) Homomorphism. Ker(¢) = nZ = {nx | x € Z}. Onto but not 1-1.

(b) Not a homomorphism unless G is abelian. This is because ¢(ab) = (ab)~! = b~1a~!

which may not be equal to ¢(a)@(b) = a=1b~1.
(c) Homomorphism. Ker(¢) = {e}. Onto and 1-1 (every element has a unique inverse).
(d) Homomorphism. Ker(¢) = R* = {x € R | x > 0}. Onto but not 1-1.

(e) Homomorphism. Ker(¢) = {x € G | x* = e} (elements in G whose order divides

n). If (n,|G|) = 1, then ¢ is onto and 1-1. Otherwise ¢ is neither onto nor 1-1.

2. If x,y € ¢(G), then we can find x¢, y; € G such that ¢(x;) = x and ¢(y;) = y. Thus
xy = @(xg)@(ys) = @(xgyg). Since G is a group, we have x,y, € G and hence xy =
@(xgys) € ©(G). Similarly, we have x ™! = (p(xg)) ™! = @(x,7!) € @(G) since x; ! € G.
Finally, note that e = ¢(e) € ¢(G).

3. Suppose @ is an monomorphism. Then ¢(x) = ¢(y) = x = y. If x € Ker(¢p), we have
¢(x) = @(e) = e which implies x = e. Hence Ker(¢) C {e} and since e € Ker(¢), we
have Ker(¢) = {e}.

Suppose Ker(¢) = {e}. Let x, y € G be such that ¢(x) = ¢(y). We have ¢(x)@(y)
which implies @(xy~!) = e. Since Ker(¢) = {e}, we have xy~! = e which is equivalent
to x = y. Hence ¢ is injective.

4. Let x',y' € G'. Since ¢ is surjective, we can find x,y € G such that ¢(x) = x’ and
©(y) = v'. Since G is abelian, we have xy = yx. Then

/! )

Xy =e@)e(y) = e(xy) = eyx) = (y)e(x) = y'x,
and hence G’ is abelian.

5. If (x1, 1), (2, ¥2), (x3,y3) € Gy X Gy, then

—~

<(X1,y1)(X2,y2))(x3,y3):Z x1%2, y1Y2) (%3, y3)

(x1x2)x3, (y1yz)y3)

/N 7 N

x1(sz3),y1(y2y3)>

X1, yl)(xzx3, y2y3)
X1,Y1) ((xz, y2)(x3, ys)),

o~~~

so multiplication in G x G; is associative. The identity is (e, f) where e is the identity
in G; and f is identity in G; since (e, f)(x,y) = (ex, fy) = (x,y) and (x,y)(e, f) =
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(xe,yf) = (x,y) forany (x,y) € G1 X Gp. If (x,y) € G; X Gy, then

Ly Dy =0Ty ly) = (e f) =Ly ) = (L y Ly,
so (x,y)~' = (x~1,y~1). Hence we conclude that G; x G; is a group under *.

Now define ¢ : G; x Gy — Gy x Gy via ¢(x,y) = (y, x). This is a homomorphism, since

@((xl,yl)(xz, yz)> = <p<(x1Xz, ylyz))

Y1Y2, X1X2)

y1,%1) (Y2, x2)

= <p<(x1,y1)>(p((xz, yz))

for all x1,x, € Gy and y1,y> € Gy. Each (y,x) € Gy x Gy is the image of (x,y) under ¢,

= (
= (

so @ is surjective. Also if (x,y) € Ker(¢), then ¢(x,y) = (y,x) = (f,e),s0 (x,y) = (e, f)
is the identity element of G; x Gy, and hence Ker(¢) = {(e, f)}. Therefore ¢ is injective

by question 3. We conclude that ¢ is an isomorphism and hence G; x Gy = G, x Gj.
6. Let g, h € G. We need to prove that i(gh) = o, is equal to (g) o (h) = o500y, If x € G
then o,y (x) = (gh)x(gh)~! and

(0g 0 03)(x) = og(hah™) = g(hxh™")g ™" = (gh)x(gh) ",
Hence we conclude that {)(gh) = oy, = 04 0 0, = P(g) o P(h), and ¥ is a homomorphism.

Now let ¢ € Ker(1). We have (g) = 0y = ig, the identity map on G. Hence for every
x € G we have og(x) = gxg~! = x, which implies gx = xg. Therefore ¢ € Z(G) and
hence Ker(y) C Z(G). Conversely, let ¢ € Z(G). We have gx = xg for all x € G. Hence
gxg~! = og(x) = x = ig(x) for every x € X. Therefore g € Ker(¢). This shows that
Z(G) C Ker(y) and hence Ker(y) = Z(G).

7. Letn € O(N) and ¢ € G. We need to show that g~'ng € 8(N). For this, set n’ := 6~ (n)
and ¢’ := 07!(g), and note that ¢'"1n’¢’ € N (since ’ € N and N < G). It follows that

g 'ng=0(g")e(n")6(g') = 6(g''n'g') € O(N).

8. Pick a point v; € R? fixed by s (for example v; = (0,1)). Also set v, := r(v;) and
v3 == r(vy). The idea is that V := {v1, v, v3} is the set of vertices of a triangle in the plane.

Since r has order 3, 7(v3) = v1 and hence (V) = V. Moreover

s(v2) = s(r(v1)) = (s7)(01) = (r~'s)(v1) =1~ (v1) = v3
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and similarly s(v3) = vy. It follows that s(V)) = V, and therefore ¢(V) = V for all ¢ € D.

So if ¢ € Dg, we can define its restriction r(g) : V — V (which just sends v — ¢(v)). Note
that 7(gh) = r(g)r(h) for all g, h € Dg; indeed

r(gh)(v) = (gh)(v) = g(h(v)) = g(r(h)(v)) = r(g)(r(h)(v)) = (r(g)r(h))(v)

for all v € V. In particular (¢~ )r(g) = r(¢'g) = r(e) = e and similarly (g)r(¢~!) = ¢;
in other words r(g~!) is the inverse of r(g). Therefore r defines a function Dg — A(V),

which is a homomorphism by the above calculation.

To show that r is an isomorphism, it suffices to prove injectivity, because Dg and A(V) are
finite sets of the same size. If ¢ € Ker(r) then the restriction of g to V is the identity, so ¢
tixes v1 and v;. You can check that these two vectors give a basis for R2. Since the elements
of Dg are linear transformations (because r and s are), it follows that g fixes every vector
in R2. This shows that Ker(r) = {e}, as required.

It remains to prove that A(V) = S3. For this, define f : {1,2,3} — V by f(i) = v;. L hope
it is clear that f is a bijection. Next, we can define ¢ : S3 — A(V) by o(x) = f1xf. If
x,y € S3 then

o(xy) = flxyf = fxffxf = o(x)o(y),
so @ is a homomorphism. It is bijective because it has an inverse given by g — fgf L.

Therefore ¢ is an isomorphism, so Dg = A(V) = Ss.

For the challenge problem, let G be a nonabelian group of order 6. By Lagrange’s theorem,
elements of G can have orders 1, 2, 3 and 6. If ¢ € G has order 6, then (g) is a subgroup of
G with order 6, so (g) = G, contradicting the assumption that G is nonabelian. Therefore
G only has elements of orders 1, 2 and 3. The set {g € G | 0(g) = 3} can be partitioned
into subsets of the form {g, ¢!} (with ¢ # ¢~ !) so G has an even number of elements of
order 3, i.e. either 0, 2, 4 or 6. It cannot have 6 because o(¢) = 1, and it cannot have 0 by

Problem 2 on Homework 2 (if ¢? = e for all ¢ € G, then G is abelian).

Next, let g,h € G have orders 2 and 3 respectively. Suppose for a contradiction that
¢h = hg. Since C(g) contains ¢ and &, both 2 and 3 divide |C(g)| by Lagrange’s theorem.
Therefore C(g) = G, and similarly C(h) = G. Given any g’ € G of order 2, it follows that
¢'h = hg', and the same argument shows that C(¢') = G. Similarly C(h') = G for any
W' € G of order 3. Therefore every element of G is central, which is impossible because G
is nonabelian. The upshot is that gh # hg, or equivalently h~'¢h # g. This shows that G
has at least two elements of order 2 (namely ¢ and h~1gh), so it cannot have 4 of order 3.

Therefore G has 3 elements of order 2 and 2 of order 3.
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9 & 10.

LetT:={g€G|o(g

defines a function ¢(g

o(gh)(t) = ght(gh)™! = ghth™'g™" = go(h)()g™" = @(g)(w(h)(1)) = (#(8)e(h))(t)

forall t € T, so p(gh) = @(g)@(h). It follows that ¢(g~!) is the inverse of ¢(g), and

= 2}. As above we can easily show that A(T) = S3. Each ¢ € G
: T — T by sending t + gtg~ 1. If ¢,h € G then

)
)

in partcular ¢ defines a function G — A(T). The above calculation shows that ¢ is a
homomorphism. As above it remains to show that ¢ is injective. For this, let ¢ € Ker(¢).
Since ¢(g) is the identity function T — T, ¢ commutes with every element of T. In other
words T C C(g), which implies that |C(g)| > 4 (since e € C(g) also). Therefore g is
central by Lagrange’s theorem. This forces ¢ = ¢, because the elements of order 2 do not

commute with those of order 3, and vice versa.

We will tackle these at the same time, because if Isom(T) = S, then |Isom(T)| = 24. The
3 x 3 identity matrix obviously belongs to Isom(T). Moreover, if B,C € Isom(T) then
B and C give bijections T — T, so BC and B! also give bijections T — T, and hence
BC,B~! € Isom(T). Thus Isom(T) < GL3(R), and in particular Isom(T) is a group.

Let V = {v1,v5,0v3,04} be the set of vertices of T. The second paragraph of Problem 8
(with some minor adjustments) shows that the restriction map r : Isom(T) — A(V) is
a homomorphism. It is injective by another similar argument: any three vertices give a
basis for R3, and the elements of Isom(T) are literally matrices this time. To check that any
three vertices give a basis, it might be easiest to check the first three directly, then express
all four in that basis. Since vq + vy + v3 + v4 = 0 you will get {e1,ez,e3,(—1,—-1,—1)},
where ¢; is the ith standard basis vector (the ith column of the 3 x 3 identity matrix). This

set is a bit easier to deal with.

To prove that r is onto, we have to do some work (because |Isom(T)| is unknown). For
each f € A(V) let My be the 3 x 3 matrix with columns f(v1), f(v2) and f(v3). Since any
three vertices give a basis for R?, these matrices are all invertible. By definition M re; =
f(v;), and hence MM, 'v; = f(v;), for each i € {1,2,3}. It follows that

M¢M; "oy = MyM, ! (=01 — 03 —03) = —f(01) — f(v2) — f(v3) = f(v4)

(the last step follows from the formula v + v, 4+ v3 + v4 = 0 and the fact that f is bijective).
This shows that r(MyM, 1) = £, if you are willing to accept that M Mg 1 € Isom(T). To
prove this, note that T is the convex hull of V, which means it is the set of convex linear
combinations of elements of V. A linear combination Zle a;v; is convex provided that the
coefficients are nonnegative and add up to 1. Soift € T thent = ):?:1 a;v; for some a; > 0
with ¥ ; a; = 1, and hence MfMglt =Y+, aiMfMglvi =Y+ aif(v;) €T,
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