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. It suffice to prove that every left coset is also a right coset.

Since [G : H| = 2, then we have exactly 2 left and right cosets of H. Let the set of left cosets
be {H, gH} and the set of right cosets be {H, Hg}. Since cosets forms disjoint partition of G,
we have H| |gH = G which implies gH = G\ H. For the same reason we have Hg = G\ H.
Hence we have H = H and gH = G\H = Hg and H is normal in G.

. Since G is cyclic, let G =< g >. Let N be a normal subgroup. We will prove that
G/N =< gN > which would imply that G/N is cyclic.

Since G =< g >, we have G = {e, ¢!, ¢?,...}. Hence G/N = {N,gN,¢*N,...} =< gN >.

. Define ¢ : (R, +) — (R>°, x) via ¢(x) = e*. We will show that ¢ is isomorphism.

Vz,y € R, we have ¢(x +y) = ¥ = e%e¥ = ¢(z)p(y). Hence ¢ is homomorphism.
Also, from calculus, we know that e” is a bijective function on R — R>Y. Hence ¢ is
isomorphism.

. Let G be an abelian group and H be a subgroup of G. Then for every g € G, since G is
abelian, we have gHg~' = g¢g~'H = H. Hence H is normal in G.

. Let z,y € G, then mult,(z) + mult,(y) = nz+ny =Y ;" + Y ", y. Since G is abelian,
we can rearrange the order of the summation. Hence

n

mult, (z) + mult, (y) = Z x + Z y = Z(m +y) = mult,(x +y)
i=1 i=1 i=1

Then we conclude that mult,, is group homomorphism.
kermult, = {z € G | nz = e} = {x € G | order(x)|n}

Some comments: If you think of G as multiplicative group, then nx is just [['; z = a™.
Then the kernel is the set of elements in G whose order divides n.

. Let 0,7 € S, be disjoint cycles. Then for every a € {1,...,n},

Case 1: o(a) # a, then a and o(a) are in the cycle of 0. since o, 7 are disjoint cycle, we have
7(a) = a and 7(0(a)) = o(a). Hence 7o(a) = 7(0(a)) = o(a) and o7(a) = o(a).

Case 2: 7(a) # a, follow the same argument as above, we have 7o (a) = o7(a)

Case 3: o(a) = 7(a) = a. Then 7o(a) = 7(a) = a and o7(a) = o(a) = a.

Hence for all cases, we conclude that o7(a) = 7o(a) for all @ € {1,...,n}. Then we have
oT =TO.



7. Let 0 € S, be a k-cycle. Let ¢ = (ay,...,axr) be the cycle representation of o. Then

10.

observe that (ai,...,ax) = (ag,a1)(ax—1,a1) - (as,a1)(az,a1) (you can prove this formula
by induction on the cycle length k) which is the product of k — 1 transpositions. Hence o is
an odd permutation when k — 1 is odd, which is equivalent to k is even.

. Since conjugation preserve cycle types, hence the set of conjugation classes are exactly cycle

types. Here are all of them with representative:

cycle type  representative

(1,1,1,1,1,1) e
(2,1,1,1,1) (1,2)
(2,2,1,1) (1,2)(3,4)

(22,2)  (1,2)(3:4)(5,6)

(3,1,1,1) (1,2,3)

(3,2,1) (1,2,3)(4,5)
(1,2,3)(

(1,2,3,4)(5,6)
(1,2,3,4,5)
(1,2,3,4,5,6)

1
(3,3) )
(4,1,1) (1,2,3,
)
)

. H:={e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)} is a normal subgroup of Ay4.

Proof: Since conjugation preserve the cycle type, and H contains all the permutation of the
cycle type (2,2). Hence H is normal in Ay.

Let G be finite, simple, and abelian. Suppose |G| is not a prime, say |G| = pb for some prime
p and integer b > 1. Then by Cauchy’s theorem, we can find an element g € G of order p.
Then < g > is a subgroup of G of order p. Since 1 < | < g >|=p < pb=|G|. Hence < g >
is a non-trivial subgroup of G. Further, since G is abelian, by problem 4, we conclude that
< g > is normal in G and < g > is non-trivial. This contradicts that G is simple.



