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1. It suffice to prove that every left coset is also a right coset.
Since [G : H] = 2, then we have exactly 2 left and right cosets of H. Let the set of left cosets
be {H, gH} and the set of right cosets be {H,Hg}. Since cosets forms disjoint partition of G,
we have H

⊔
gH = G which implies gH = G\H. For the same reason we have Hg = G\H.

Hence we have H = H and gH = G\H = Hg and H is normal in G.

2. Since G is cyclic, let G =< g >. Let N be a normal subgroup. We will prove that
G/N =< gN > which would imply that G/N is cyclic.

Since G =< g >, we have G = {e, g1, g2, . . .}. Hence G/N = {N, gN, g2N, . . .} =< gN >.

3. Define φ : (R,+) 7→ (R>0,×) via φ(x) = ex. We will show that φ is isomorphism.

∀x, y ∈ R, we have φ(x+ y) = ex+y = exey = φ(x)φ(y). Hence φ is homomorphism.
Also, from calculus, we know that ex is a bijective function on R 7→ R>0. Hence φ is
isomorphism.

4. Let G be an abelian group and H be a subgroup of G. Then for every g ∈ G, since G is
abelian, we have gHg−1 = gg−1H = H. Hence H is normal in G.

5. Let x, y ∈ G, then multn(x) + multn(y) = nx + ny =
∑n

i=1 x +
∑n

i=1 y. Since G is abelian,
we can rearrange the order of the summation. Hence

multn(x) + multn(y) =

n∑
i=1

x+

n∑
i=1

y =

n∑
i=1

(x+ y) = multn(x+ y)

Then we conclude that multn is group homomorphism.

ker multn = {x ∈ G | nx = e} = {x ∈ G | order(x)
∣∣n}

Some comments: If you think of G as multiplicative group, then nx is just
∏n

i=1 x = xn.
Then the kernel is the set of elements in G whose order divides n.

6. Let σ, τ ∈ Sn be disjoint cycles. Then for every a ∈ {1, . . . , n},
Case 1: σ(a) 6= a, then a and σ(a) are in the cycle of σ. since σ, τ are disjoint cycle, we have
τ(a) = a and τ(σ(a)) = σ(a). Hence τσ(a) = τ(σ(a)) = σ(a) and στ(a) = σ(a).
Case 2: τ(a) 6= a, follow the same argument as above, we have τσ(a) = στ(a)
Case 3: σ(a) = τ(a) = a. Then τσ(a) = τ(a) = a and στ(a) = σ(a) = a.
Hence for all cases, we conclude that στ(a) = τσ(a) for all a ∈ {1, . . . , n}. Then we have
στ = τσ.
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7. Let σ ∈ Sn be a k-cycle. Let σ = (a1, . . . , ak) be the cycle representation of σ. Then
observe that (a1, . . . , ak) = (ak, a1)(ak−1, a1) · · · (a3, a1)(a2, a1) (you can prove this formula
by induction on the cycle length k) which is the product of k − 1 transpositions. Hence σ is
an odd permutation when k − 1 is odd, which is equivalent to k is even.

8. Since conjugation preserve cycle types, hence the set of conjugation classes are exactly cycle
types. Here are all of them with representative:

cycle type representative
(1,1,1,1,1,1) e
(2,1,1,1,1) (1,2)
(2,2,1,1) (1,2)(3,4)
(2,2,2) (1,2)(3,4)(5,6)

(3,1,1,1) (1,2,3)
(3,2,1) (1,2,3)(4,5)
(3,3) (1,2,3)(4,5,6)

(4,1,1) (1,2,3,4)
(4,2) (1,2,3,4)(5,6)
(5,1) (1,2,3,4,5)
(6) (1,2,3,4,5,6)

9. H := {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} is a normal subgroup of A4.
Proof: Since conjugation preserve the cycle type, and H contains all the permutation of the
cycle type (2,2). Hence H is normal in A4.

10. Let G be finite, simple, and abelian. Suppose |G| is not a prime, say |G| = pb for some prime
p and integer b > 1. Then by Cauchy’s theorem, we can find an element g ∈ G of order p.
Then < g > is a subgroup of G of order p. Since 1 < | < g > | = p < pb = |G|. Hence < g >
is a non-trivial subgroup of G. Further, since G is abelian, by problem 4, we conclude that
< g > is normal in G and < g > is non-trivial. This contradicts that G is simple.
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