Math 100A hw3 Sample solution

Tianhao Wang

November 18, 2017

1. It suffice to prove that every left coset is also a right coset.

Since $[G: H]=2$, then we have exactly 2 left and right cosets of H. Let the set of left cosets be $\{H, g H\}$ and the set of right cosets be $\{H, H g\}$. Since cosets forms disjoint partition of G, we have $H \bigsqcup g H=G$ which implies $g H=G \backslash H$. For the same reason we have $H g=G \backslash H$. Hence we have $H=H$ and $g H=G \backslash H=H g$ and H is normal in G.
2. Since G is cyclic, let $G=\langle g\rangle$. Let N be a normal subgroup. We will prove that $G / N=<g N>$ which would imply that G / N is cyclic.
Since $G=\langle g\rangle$, we have $G=\left\{e, g^{1}, g^{2}, \ldots\right\}$. Hence $G / N=\left\{N, g N, g^{2} N, \ldots\right\}=<g N>$.
3. Define $\phi:(R,+) \mapsto\left(R^{>0}, \times\right)$ via $\phi(x)=e^{x}$. We will show that ϕ is isomorphism.
$\forall x, y \in R$, we have $\phi(x+y)=e^{x+y}=e^{x} e^{y}=\phi(x) \phi(y)$. Hence ϕ is homomorphism.
Also, from calculus, we know that e^{x} is a bijective function on $R \mapsto R^{>0}$. Hence ϕ is isomorphism.
4. Let G be an abelian group and H be a subgroup of G. Then for every $g \in G$, since G is abelian, we have $g H g^{-1}=g g^{-1} H=H$. Hence H is normal in G.
5. Let $x, y \in G$, then $\operatorname{mult}_{n}(x)+\operatorname{mult}_{n}(y)=n x+n y=\sum_{i=1}^{n} x+\sum_{i=1}^{n} y$. Since G is abelian, we can rearrange the order of the summation. Hence

$$
\operatorname{mult}_{n}(x)+\operatorname{mult}_{n}(y)=\sum_{i=1}^{n} x+\sum_{i=1}^{n} y=\sum_{i=1}^{n}(x+y)=\operatorname{mult}_{n}(x+y)
$$

Then we conclude that mult ${ }_{n}$ is group homomorphism.
ker mult ${ }_{n}=\{x \in G \mid n x=e\}=\{x \in G|\operatorname{order}(x)| n\}$
Some comments: If you think of G as multiplicative group, then $n x$ is just $\prod_{i=1}^{n} x=x^{n}$. Then the kernel is the set of elements in G whose order divides n.
6. Let $\sigma, \tau \in S_{n}$ be disjoint cycles. Then for every $a \in\{1, \ldots, n\}$,

Case 1: $\sigma(a) \neq a$, then a and $\sigma(a)$ are in the cycle of σ. since σ, τ are disjoint cycle, we have $\tau(a)=a$ and $\tau(\sigma(a))=\sigma(a)$. Hence $\tau \sigma(a)=\tau(\sigma(a))=\sigma(a)$ and $\sigma \tau(a)=\sigma(a)$.
Case 2: $\tau(a) \neq a$, follow the same argument as above, we have $\tau \sigma(a)=\sigma \tau(a)$
Case 3: $\sigma(a)=\tau(a)=a$. Then $\tau \sigma(a)=\tau(a)=a$ and $\sigma \tau(a)=\sigma(a)=a$.
Hence for all cases, we conclude that $\sigma \tau(a)=\tau \sigma(a)$ for all $a \in\{1, \ldots, n\}$. Then we have $\sigma \tau=\tau \sigma$.
7. Let $\sigma \in S_{n}$ be a k-cycle. Let $\sigma=\left(a_{1}, \ldots, a_{k}\right)$ be the cycle representation of σ. Then observe that $\left(a_{1}, \ldots, a_{k}\right)=\left(a_{k}, a_{1}\right)\left(a_{k-1}, a_{1}\right) \cdots\left(a_{3}, a_{1}\right)\left(a_{2}, a_{1}\right)$ (you can prove this formula by induction on the cycle length k) which is the product of $k-1$ transpositions. Hence σ is an odd permutation when $k-1$ is odd, which is equivalent to k is even.
8. Since conjugation preserve cycle types, hence the set of conjugation classes are exactly cycle types. Here are all of them with representative:

cycle type	representative
$(1,1,1,1,1,1)$	e
$(2,1,1,1,1)$	$(1,2)$
$(2,2,1,1)$	$(1,2)(3,4)$
$(2,2,2)$	$(1,2)(3,4)(5,6)$
$(3,1,1,1)$	$(1,2,3)$
$(3,2,1)$	$(1,2,3)(4,5)$
$(3,3)$	$(1,2,3)(4,5,6)$
$(4,1,1)$	$(1,2,3,4)$
$(4,2)$	$(1,2,3,4)(5,6)$
$(5,1)$	$(1,2,3,4,5)$
(6)	$(1,2,3,4,5,6)$

9. $H:=\{e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$ is a normal subgroup of A_{4}.

Proof: Since conjugation preserve the cycle type, and H contains all the permutation of the cycle type $(2,2)$. Hence H is normal in A_{4}.
10. Let G be finite, simple, and abelian. Suppose $|G|$ is not a prime, say $|G|=p b$ for some prime p and integer $b>1$. Then by Cauchy's theorem, we can find an element $g \in G$ of order p. Then $\langle g\rangle$ is a subgroup of G of order p. Since $1<|<g>|=p<p b=|G|$. Hence $<g>$ is a non-trivial subgroup of G. Further, since G is abelian, by problem 4, we conclude that $\langle g\rangle$ is normal in G and $\langle g\rangle$ is non-trivial. This contradicts that G is simple.

