Math 100A hw3 Sample solution

Tianhao Wang

November 18, 2017

- 1. It suffice to prove that every left coset is also a right coset. Since [G:H] = 2, then we have exactly 2 left and right cosets of H. Let the set of left cosets be $\{H, gH\}$ and the set of right cosets be $\{H, Hg\}$. Since cosets forms disjoint partition of G, we have $H \bigsqcup gH = G$ which implies $gH = G \backslash H$. For the same reason we have $Hg = G \backslash H$. Hence we have H = H and $gH = G \backslash H = Hg$ and H is normal in G.
- Since G is cyclic, let G =< g >. Let N be a normal subgroup. We will prove that G/N =< gN > which would imply that G/N is cyclic.
 Since G =< g >, we have G = {e, g¹, g²,...}. Hence G/N = {N, gN, g²N,...} =< gN >.
- 3. Define $\phi: (R, +) \mapsto (R^{>0}, \times)$ via $\phi(x) = e^x$. We will show that ϕ is isomorphism.

 $\forall x, y \in R$, we have $\phi(x + y) = e^{x+y} = e^x e^y = \phi(x)\phi(y)$. Hence ϕ is homomorphism. Also, from calculus, we know that e^x is a bijective function on $R \mapsto R^{>0}$. Hence ϕ is isomorphism.

- 4. Let G be an abelian group and H be a subgroup of G. Then for every $g \in G$, since G is abelian, we have $gHg^{-1} = gg^{-1}H = H$. Hence H is normal in G.
- 5. Let $x, y \in G$, then $\operatorname{mult}_n(x) + \operatorname{mult}_n(y) = nx + ny = \sum_{i=1}^n x + \sum_{i=1}^n y$. Since G is abelian, we can rearrange the order of the summation. Hence

$$\operatorname{mult}_n(x) + \operatorname{mult}_n(y) = \sum_{i=1}^n x + \sum_{i=1}^n y = \sum_{i=1}^n (x+y) = \operatorname{mult}_n(x+y)$$

Then we conclude that mult_n is group homomorphism.

 $\operatorname{ker mult}_n = \{x \in G \mid nx = e\} = \{x \in G \mid \operatorname{order}(x) \mid n\}$

Some comments: If you think of G as multiplicative group, then nx is just $\prod_{i=1}^{n} x = x^{n}$. Then the kernel is the set of elements in G whose order divides n.

6. Let $\sigma, \tau \in S_n$ be disjoint cycles. Then for every $a \in \{1, \ldots, n\}$, Case 1: $\sigma(a) \neq a$, then a and $\sigma(a)$ are in the cycle of σ . since σ, τ are disjoint cycle, we have $\tau(a) = a$ and $\tau(\sigma(a)) = \sigma(a)$. Hence $\tau\sigma(a) = \tau(\sigma(a)) = \sigma(a)$ and $\sigma\tau(a) = \sigma(a)$. Case 2: $\tau(a) \neq a$, follow the same argument as above, we have $\tau\sigma(a) = \sigma\tau(a)$ Case 3: $\sigma(a) = \tau(a) = a$. Then $\tau\sigma(a) = \tau(a) = a$ and $\sigma\tau(a) = \sigma(a) = a$. Hence for all cases, we conclude that $\sigma\tau(a) = \tau\sigma(a)$ for all $a \in \{1, \ldots, n\}$. Then we have $\sigma\tau = \tau\sigma$.

- 7. Let $\sigma \in S_n$ be a k-cycle. Let $\sigma = (a_1, \ldots, a_k)$ be the cycle representation of σ . Then observe that $(a_1, \ldots, a_k) = (a_k, a_1)(a_{k-1}, a_1) \cdots (a_3, a_1)(a_2, a_1)$ (you can prove this formula by induction on the cycle length k) which is the product of k-1 transpositions. Hence σ is an odd permutation when k-1 is odd, which is equivalent to k is even.
- 8. Since conjugation preserve cycle types, hence the set of conjugation classes are exactly cycle types. Here are all of them with representative:

cycle type	representative
(1, 1, 1, 1, 1, 1)	е
$(2,\!1,\!1,\!1,\!1)$	(1,2)
$(2,\!2,\!1,\!1)$	(1,2)(3,4)
(2,2,2)	(1,2)(3,4)(5,6)
$(3,\!1,\!1,\!1)$	(1,2,3)
(3,2,1)	(1,2,3)(4,5)
$(3,\!3)$	(1,2,3)(4,5,6)
(4,1,1)	(1,2,3,4)
(4,2)	(1,2,3,4)(5,6)
(5,1)	$(1,\!2,\!3,\!4,\!5)$
(6)	$(1,\!2,\!3,\!4,\!5,\!6)$

- 9. $H := \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ is a normal subgroup of A_4 . Proof: Since conjugation preserve the cycle type, and H contains all the permutation of the cycle type (2,2). Hence H is normal in A_4 .
- 10. Let G be finite, simple, and abelian. Suppose |G| is not a prime, say |G| = pb for some prime p and integer b > 1. Then by Cauchy's theorem, we can find an element $g \in G$ of order p. Then $\langle g \rangle$ is a subgroup of G of order p. Since $1 < |\langle g \rangle| = p < pb = |G|$. Hence $\langle g \rangle$ is a non-trivial subgroup of G. Further, since G is abelian, by problem 4, we conclude that $\langle g \rangle$ is normal in G and $\langle g \rangle$ is non-trivial. This contradicts that G is simple.