Math 100A hw6 Sample solution

Tianhao Wang

December 2, 2017

1. By looking at the multiplication table, we have $Z\left(Q_{8}\right)=\{ \pm 1\}$
2. $Q_{8} / Z\left(Q_{8}\right)=\{[1],[i],[j],[k]\}$ and we have the multiplication table:

\cdot	$[1]$	$[\mathrm{i}]$	$[\mathrm{j}]$	$[\mathrm{k}]$
$[1]$	$[1]$	$[\mathrm{i}]$	$[\mathrm{j}]$	$[\mathrm{k}]$
$[\mathrm{i}]$	$[\mathrm{i}]$	$[1]$	$[\mathrm{k}]$	$[\mathrm{j}]$
$[\mathrm{j}]$	$[\mathrm{j}]$	$[\mathrm{k}]$	$[1]$	$[\mathrm{i}]$
$[\mathrm{k}]$	$[\mathrm{k}]$	$[\mathrm{j}]$	$[\mathrm{i}]$	$[1]$

which is the same as the multiplication table of K_{4}. Hence $Q_{8} / Z\left(Q_{8}\right) \simeq K_{4}$.
3. It suffice to prove that Heis is closed under multiplication and inverse.

Let $\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]$ and $\left[\begin{array}{ccc}1 & A & B \\ 0 & 1 & C \\ 0 & 0 & 1\end{array}\right]$ be two elements of Heis, then

$$
\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & A & B \\
0 & 1 & C \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & A+a & B+a C+b \\
0 & 1 & C+c \\
0 & 0 & 1
\end{array}\right]
$$

which is an element in Heis. Hence Heis is closed under multiplication.
The inverse of $\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]$ is $\left[\begin{array}{ccc}1 & -a & a c-b \\ 0 & 1 & -c \\ 0 & 0 & 1\end{array}\right]$ which is still an element in Heis. Hence Heis is closed under inverse and we conclude that Heis is a subgroup of $G L_{3}(\mathbb{R})$
4. (a) We first prove that N is a subgroup of Heis.

Let $\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $\left[\begin{array}{lll}1 & 0 & B \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ be two elements of N, then

$$
\left[\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & B \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & B+b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

which is an element in N. Hence N is closed under multiplication. The inverse of $\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is $\left[\begin{array}{ccc}1 & 0 & -b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ which is still an element in N. Hence N is closed under inverse and we conclude that N is a subgroup of Heis.

Next, we will prove that N is normal in Heis.
Let $\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \in N$ and $\left[\begin{array}{ccc}1 & A & B \\ 0 & 1 & C \\ 0 & 0 & 1\end{array}\right] \in$ Heis, Then

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & A & B \\
0 & 1 & C \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & A & B \\
0 & 1 & C \\
0 & 0 & 1
\end{array}\right]^{-1} } & =\left[\begin{array}{lll}
1 & A & B \\
0 & 1 & C \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -A & A C-B \\
0 & 1 & -C \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & A & B+b \\
0 & 1 & C \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -A & A C-B \\
0 & 1 & -C \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in N
\end{aligned}
$$

Hence N is a normal subgroup of Heis.
(b) Consider the map $\phi: N \mapsto \mathbb{R}$ via $\phi\left(\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right)=b$. We will prove that this map is an isomorphism.

$$
\begin{gathered}
\phi\left(\left[\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=\phi\left(\left[\begin{array}{ccc}
1 & 0 & b+c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=b+c \\
\phi\left(\left[\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)+\phi\left(\left[\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=b+c
\end{gathered}
$$

Hence ϕ is group homomorphism.
$\forall x \in \mathbb{R}$, we have $\left[\begin{array}{lll}1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \in N$ such that $\phi\left(\left[\begin{array}{lll}1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right)=x$. Hence ϕ is surjective.
$\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \in \operatorname{ker} \phi \Longleftrightarrow \phi\left(\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\right)=0 \Longleftrightarrow b=0$. Hence $\operatorname{ker} \phi=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$.
Hence ϕ is injective.
Since ϕ is a homomorphism which is surjective and also injective, we conclude that ϕ is isomorphism and $N \simeq \mathbb{R}$
5. Consider that map ϕ : Heis $\mapsto \mathbb{R}^{2}$ via $\phi\left(\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]\right)=(a, c)$. We will prove that this map is a surjective homomorphism with kernel being N.

$$
\phi\left(\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & A & B \\
0 & 1 & C \\
0 & 0 & 1
\end{array}\right]\right)=\phi\left(\left[\begin{array}{ccc}
1 & A+a & B+a C+b \\
0 & 1 & C+c \\
0 & 0 & 1
\end{array}\right]\right)=(A+a, C+c)
$$

$$
\phi\left(\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]\right)+\phi\left(\left[\begin{array}{ccc}
1 & A & B \\
0 & 1 & C \\
0 & 0 & 1
\end{array}\right]\right)=(a, c)+(A, C)=(A+a, C+c)
$$

Hence ϕ is group homomorphism.
Let $(x, y) \in \mathbb{R}^{2}$, we have $\left[\begin{array}{lll}1 & x & 0 \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right] \in$ Heis such that $\phi\left(\left[\begin{array}{lll}1 & x & 0 \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right]\right)=(x, y)$. Hence ϕ is surjective.
If $\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right] \in \operatorname{ker} \phi$, then $\phi\left(\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]\right)=(0,0)$ implies that $a=c=0$ and hence $\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \in N$. Hence $\operatorname{ker} \phi \subset N$.
Let $\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \in N$, then $\phi\left(\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right)=(0,0)$ implies that $\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \in \operatorname{ker} \phi$. Hence $N \subset \operatorname{ker} \phi$ and we have $\operatorname{ker} \phi=N$
By first isomorphism theorem, we have Heis $/ N \simeq \mathbb{R}^{2}$
6. Define $\phi: G \mapsto \mathbb{R}^{>0}$ via $\phi(x)=|x|$. We will prove that this is a surjective homomorphism with kernel being N.
Let $x, y \in G$, we have $\phi(x y)=|x y|=|x||y|=\phi(x) \phi(y)$. Hence ϕ is group homomorphism.
Let $x \in R^{>0}$, we can find $x \in G$ such that $\phi(x)=|x|=x$. Hence ϕ is surjective.
Let $x \in G, x \in \operatorname{ker} \phi \Leftrightarrow|x|=1 \Leftrightarrow x= \pm 1$. Hence $\operatorname{ker} \phi=\{ \pm 1\}=N$.
Then by first isomorphism theorem, we have $G / N \simeq \mathbb{R}^{>0}$
7. I will do (3) and (1) first.

Define $\phi: G \mapsto G_{2}$ via $\phi((a, b))=b$.
$\phi\left(\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\right)=\phi\left(\left(a_{1} a_{2}, b_{1} b_{2}\right)\right)=b_{1} b_{2}=\phi\left(\left(a_{1}, b_{1}\right)\right) \phi\left(\left(a_{2}, b_{2}\right)\right)$. Hence ϕ is group homomorphism.
For every $b \in G_{2}$, we have $\left(e_{1}, b\right) \in G$ such that $\phi\left(\left(e_{1}, b\right)\right)=b$. Hence ϕ is surjective.
$(a, b) \in \operatorname{ker} \phi \Leftrightarrow \phi((a, b))=e_{2} \Leftrightarrow b=e_{2} \Leftrightarrow(a, b)=\left(a, e_{2}\right) \in N$. Hence $N=\operatorname{ker} \phi$. Hence we conclude that N is a normal subgroup of G and also $G / N \simeq G_{2}$ by first isomorphism theorem.

To prove $N \simeq G_{1}$, it suffice to prove that $\psi: N \mapsto G_{1}$ via $\psi\left(a, e_{2}\right)=a$ is isomorphism. The proof is similar to previous questions and hence omitted.
8. Observe that N contains all the $(2,2)$ cycle of A_{4} and the identity. Conjugating e by other elements will give e which is in N. Since conjugation of permutations will preserve cycle type, hence conjugating a (2,2)-cycle in N by other elements in A_{4} will give a $(2,2)$-cycle which is still an element of N. Hence we conclude that N is normal in A_{4}
9. By Lagrange, $\left|A_{4} / N\right|=\left|A_{4}\right| /|N|=12 / 4=3$. Since 3 is prime, hence A_{4} / N is a cyclic group of order 3, then we have $A_{4} / N \simeq Z_{3}$
10. Since $10=2 * 5$, then by Cauchy's Theorem, we can find an element $g \in G$ of order 5 . Then $\langle g\rangle$ is a subgroup of index $10 / 5=2$ in G. By hw5 $\# 1$, we conclude that $\langle g\rangle$ is normal in G.

