Math 100A hw6 Sample solution

Tianhao Wang

December 2, 2017

1. By looking at the multiplication table, we have $Z(Q_8) = \{\pm 1\}$

2. $Q_8/Z(Q_8) = \{[1], [i], [j], [k]\}$ and we have the multiplication table:

•	[1]	[i]	[j]	[k]
[1]	[1]	[i]	[j]	[k]
[i]	[i]	[1]	[k]	[j]
[j]	[j]	[k]	[1]	[i]
[k]	[k]	[j]	[i]	[1]

which is the same as the multiplication table of K_4 . Hence $Q_8/Z(Q_8) \simeq K_4$.

3. It suffice to prove that Heis is closed under multiplication and inverse.

Let	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} a \\ 1 \\ 0 \end{array}$	b c 1	and	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} A \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} B \\ C \\ 1 \end{bmatrix}$	be	two	o ele	emen	ts c	of Heis,	then
					$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} a \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} b \\ c \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} A \ 1 \ 0 \end{array}$	$\begin{bmatrix} B \\ C \\ 1 \end{bmatrix}$	=	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} A+a \\ 1 \\ 0 \end{array}$	$\begin{array}{c} B + aC + c \\ C + c \\ 1 \end{array}$

which is an element in Heis. Hence Heis is closed under multiplication.

The inverse of $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$ is $\begin{bmatrix} 1 & -a & ac-b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$ which is still an element in Heis. Hence Heis is closed under inverse and we conclude that Heis is a subgroup of $GL_3(\mathbb{R})$

4. (a) We first prove that N is a subgroup of Heis.

Let $\begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 & B \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ be two elements of N, then $\begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & B \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & B+b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

which is an element in N. Hence N is closed under multiplication. The inverse of $\begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & -b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ which is still an element in N. Hence N is closed under

inverse and we conclude that N is a subgroup of Heis.

Next, we will prove that N is normal in Heis.

$$\text{Let} \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in N \text{ and } \begin{bmatrix} 1 & A & B \\ 0 & 1 & C \\ 0 & 0 & 1 \end{bmatrix} \in W \text{ and } \begin{bmatrix} 1 & A & B \\ 0 & 1 & C \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & A & B \\ 0 & 1 & C \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -A & AC - B \\ 0 & 1 & -C \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & A & B + b \\ 0 & 1 & C \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -A & AC - B \\ 0 & 1 & -C \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & C \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -A & AC - B \\ 0 & 1 & -C \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in N$$

Hence N is a normal subgroup of Heis.

(b) Consider the map $\phi : N \mapsto \mathbb{R}$ via $\phi \left(\begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = b$. We will prove that this map is an isomorphism.

$$\phi\left(\begin{bmatrix}1 & 0 & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & c\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\right) = \phi\left(\begin{bmatrix}1 & 0 & b+c\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\right) = b+c$$
$$\phi\left(\begin{bmatrix}1 & 0 & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\right) + \phi\left(\begin{bmatrix}1 & 0 & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\right) = b+c$$

Hence ϕ is group homomorphism.

 $\forall x \in \mathbb{R}, \text{ we have } \begin{bmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in N \text{ such that } \phi \left(\begin{bmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = x. \text{ Hence } \phi \text{ is surjective.}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in \ker \phi \iff \phi \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) = 0 \iff b = 0. \text{ Hence } \ker \phi = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}.$$
Hence ϕ is injective.

Since ϕ is a homomorphism which is surjective and also injective, we conclude that ϕ is isomorphism and $N \simeq \mathbb{R}$

5. Consider that map ϕ : Heis $\mapsto \mathbb{R}^2$ via $\phi \left(\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \right) = (a, c)$. We will prove that this map is a surjective homomorphism with kernel being N.

$$\phi\left(\begin{bmatrix}1 & a & b\\0 & 1 & c\\0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & A & B\\0 & 1 & C\\0 & 0 & 1\end{bmatrix}\right) = \phi\left(\begin{bmatrix}1 & A+a & B+aC+b\\0 & 1 & C+c\\0 & 0 & 1\end{bmatrix}\right) = (A+a, C+c)$$

$$\phi\left(\begin{bmatrix}1 & a & b\\0 & 1 & c\\0 & 0 & 1\end{bmatrix}\right) + \phi\left(\begin{bmatrix}1 & A & B\\0 & 1 & C\\0 & 0 & 1\end{bmatrix}\right) = (a,c) + (A,C) = (A+a,C+c)$$

Hence ϕ is group homomorphism.

Let $(x,y) \in \mathbb{R}^2$, we have $\begin{bmatrix} 1 & x & 0 \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \in$ Heis such that $\phi \left(\begin{bmatrix} 1 & x & 0 \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right) = (x,y)$. Hence ϕ is surjective.

If $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \in \ker \phi$, then $\phi \left(\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \right) = (0,0)$ implies that a = c = 0 and hence $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in N. \text{ Hence } \ker \phi \subset N.$ Let $\begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in N$, then $\phi \left(\begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = (0,0)$ implies that $\begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in \ker \phi$. Hence $N \subset \ker \phi$ and we have $\ker \phi = N$

By first isomorphism theorem, we have $\text{Heis}/N \simeq \mathbb{R}^2$

6. Define $\phi: G \mapsto \mathbb{R}^{>0}$ via $\phi(x) = |x|$. We will prove that this is a surjective homomorphism with kernel being N.

Let $x, y \in G$, we have $\phi(xy) = |xy| = |x||y| = \phi(x)\phi(y)$. Hence ϕ is group homomorphism. Let $x \in \mathbb{R}^{>0}$, we can find $x \in G$ such that $\phi(x) = |x| = x$. Hence ϕ is surjective.

Let $x \in G$, $x \in \ker \phi \Leftrightarrow |x| = 1 \Leftrightarrow x = \pm 1$. Hence $\ker \phi = \{\pm 1\} = N$.

Then by first isomorphism theorem, we have $G/N\simeq \mathbb{R}^{>0}$

7. I will do (3) and (1) first.

Define $\phi: G \mapsto G_2$ via $\phi((a, b)) = b$. $\phi\Big((a_1,b_1)(a_2,b_2)\Big) = \phi\Big((a_1a_2,b_1b_2)\Big) = b_1b_2 = \phi\Big((a_1,b_1)\Big)\phi\Big((a_2,b_2)\Big).$ Hence ϕ is group homomorphism

For every $b \in G_2$, we have $(e_1, b) \in G$ such that $\phi((e_1, b)) = b$. Hence ϕ is surjective.

 $(a,b) \in \ker \phi \Leftrightarrow \phi\Big((a,b)\Big) = e_2 \Leftrightarrow b = e_2 \Leftrightarrow (a,b) = (a,e_2) \in N.$ Hence $N = \ker \phi$. Hence we conclude that N is a normal subgroup of G and also $G/N \simeq G_2$ by first isomorphism theorem.

To prove $N \simeq G_1$, it suffice to prove that $\psi: N \mapsto G_1$ via $\psi(a, e_2) = a$ is isomorphism. The proof is similar to previous questions and hence omitted.

8. Observe that N contains all the (2,2) cycle of A_4 and the identity. Conjugating e by other elements will give e which is in N. Since conjugation of permutations will preserve cycle type, hence conjugating a (2,2)-cycle in N by other elements in A_4 will give a (2,2)-cycle which is still an element of N. Hence we conclude that N is normal in A_4

- 9. By Lagrange, $|A_4/N| = |A_4|/|N| = 12/4 = 3$. Since 3 is prime, hence A_4/N is a cyclic group of order 3, then we have $A_4/N \simeq Z_3$
- 10. Since 10 = 2 * 5, then by Cauchy's Theorem, we can find an element $g \in G$ of order 5. Then < g > is a subgroup of index 10/5 = 2 in G. By hw5 #1, we conclude that < g > is normal in G.