Math 100A hw7 Sample solution

Tianhao Wang

December 6, 2017

1. Pick $e H=H$ be a coset of H. Then orb $(H)=\{g \cdot H \mid g \in G\}=\{g H \mid g \in G\}$ which equals S, the set of all the cosets of H. Hence the action is transitive.
2. Let $S_{n} \curvearrowright T_{\sigma}$ via conjugation. i.e $g \cdot \tau=g \tau g^{-1}$. We will prove that this is a group action first.
$e \cdot \tau=e \tau e^{-1}=\tau$ for all $\tau \in T_{\sigma}$
$g \cdot f \cdot \tau=g \cdot f \tau f^{-1}=g f \tau f^{-1} g^{-1}=(g f) \tau(g f)^{-1}=g f \cdot \tau$ for all $\tau \in T_{\sigma}$ and $f, g \in S_{n}$
Next, pick $\sigma \in T_{\sigma}$, consider $\operatorname{orb}(\sigma)=\{g \cdot \sigma \mid g \in G\}=\left\{g \sigma g^{-1} \mid g \in G\right\}=T_{\sigma}$. Hence the action is transitive.
$\operatorname{stab}(\sigma)=\left\{g \in S_{n} \mid g \sigma g^{-1}=\sigma\right\}$. Note that $g \sigma g^{-1}=(g(1), g(2))(g(3), g(4))$. Hence $g \sigma g^{-1}=\sigma$ is equivalent to $\{g(1), g(2)\}=\{1,2\} ;\{g(3),, g(4)\}=(3,4)$ or $\{g(1), g(2)\}=$ $\{3,4\} ;\{g(3),, g(4)\}=(1,2)$. Then $|\operatorname{stab}(\sigma)|=8(n-4)!$. (8 choice for $g(1), g(2), g(3), g(4)$, $(n-4)$! choice for the other elements). Then by orbit-stabilizer theorem, we have

$$
\left|T_{\sigma}\right|=|\operatorname{orb}(\sigma)|=\frac{\left|S_{n}\right|}{|\operatorname{stab}(\sigma)|}=\frac{n!}{8(n-4)!}=\frac{n(n-1)(n-2)(n-3)}{8}
$$

3. Let $N=\{1, \ldots, k\}$. We will prove that $\operatorname{orb}(N)=\left\{\sigma(1), \ldots, \sigma(k) \mid \sigma \in S_{n}\right\}=\mathcal{P}_{k}(S)$.

For every $\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{P}_{k}(S)$, we can pick $\sigma \in S_{n}$ such that $\sigma(i)=x_{i}$ for $0 \leq i \leq k$. Hence $\mathcal{P}_{k}(S) \subset \operatorname{orb}(N)$. Also, it is clear from the definition of group action and orbits that $\operatorname{orb}(N) \subset \mathcal{P}_{k}(S)$. Hence $\operatorname{orb}(N)=\mathcal{P}_{k}(S)$ and the action is transitive.
4. Let $S_{n} \curvearrowright\{1, \ldots, n\}$. The stabilizer of N are permutations in S_{n} which fixes elements in N. Hence we have k ! choice for the first k elements. Then we have $(n-k)$! choice for rest $(n-k)$ elements. Hence $|\operatorname{stab}(N)|=k!(n-k)!$. Then by the orbit-stabilizer theorem, $\left|\mathcal{P}_{k}(S)\right|=n!/ k!(n-k)!$
5. Using same method as in problem 2, we have $|\operatorname{stab}(\sigma)|=5$ (5 choice for the leading number in the cycle). We can actually write down all the elements in the stabilizer of σ : $\operatorname{stab}(\sigma)=\{e,(12345),(13524),(14253),(15432)\}$. Observe that all those elements are in A_{5}, hence $\left|\operatorname{stab}(\sigma) \cap A_{5}\right|=5$
6. Let S be the set of 5 -cycles in A_{5}. We have $|S|=4!=24$. Let $A_{5} \curvearrowright S$ via conjugation. Using orbit-stabilizer theorem and the previous question, we have $|\operatorname{orb}((12345))|=$ $\left|A_{5}\right| /|\operatorname{stab}((12345))|=60 / 5=12 \neq 24$. Hence this action is not transitive and we conclude that not every 5 -cycle is conjugate in A_{5}. (However, they are conjugate in S_{5})
7. We first prove that $g \mathrm{Hg}^{-1}$ is a subgroup of G.

Since $H \leq G$, we have
$g e g^{-1}=e \in g H g^{-1}$
for every $g h_{1} g^{-1}, g h_{2} g^{-1} \in g H g^{-1}$, we have $\left(g h_{1} g^{-1}\right)\left(g h_{2} g^{-1}\right)=g\left(h_{1} h_{2}\right) g^{-1} \in g H g^{-1}$
for every $g h g^{-1} \in g H g^{-1}$, its inverse $\left(g h g^{-1}\right)^{-1}=g h^{-1} g^{-1} \in g H g^{-1}$
Hence $g H^{-1}$ is a subgroup of G.
Then we will prove $g \cdot H=g H g^{-1}$ is an action of G on subgroups of G.
Since $g \mathrm{Hg}^{-1}$ is a subgroup of G, the function is well-defined.
$e \cdot H=e H e^{-1}=H$ for all $H \leq G$
$a \cdot b \cdot H=a \cdot b H b^{-1}=a b H b^{-1} a^{-1}=(a b) H(a b)^{-1}=a b \cdot H$ for all $a, b \in G$ and $H \leq G$
Hence this function is a group action.
8. $H \leq G$ is normal is equivalent to $g H^{-1}=H$ for all $g \in G$ which is equivalent to $\operatorname{orb}(H)=$ $\left\{g H g^{-1} \mid g \in G\right\}=\{H\}$
9. This is actually a direct result of Cauchy's Theorem.

Here is how to prove it without Cauchy's Theorem: Since $|G|=p^{2} \geq 4>1$, pick $x \in G-\{e\}$. By Lagrange theorem, order of x is $1, p$ or p^{2}. Since $x \neq e$, order of x is not 1 . If order of x is p, then we are done. Else, suppose the order of x is p^{2}. Then we have $x^{p^{2}}=e$ which implies that $\left(x^{p}\right)^{p}=e$. Since the order of x is p^{2}, we have $x^{p} \neq e$, and the order of x^{p} is not 1. Further, since $\left(x^{p}\right)^{p}=e$, the order of x^{p} is a divisor of p, and not 1 . Hence the order of x^{p} is p. For all cases, we can find a element of order p.
10. I will use Burnside Formula to calculate the number of orbits. Let S be the set of all paintings. If each side can have same colors, here is the table of fixed points:

$g \in D_{16}$	$\left\|S^{g}\right\|$
e	8^{8}
r	8
r^{2}	8^{2}
r^{3}	8
r^{4}	8^{4}
r^{5}	8
r^{6}	8^{2}
r^{7}	8
$s, r^{2} s, r^{4} s, r^{6} s, r^{8} s$	8^{4}
$r s, r^{3} s, r^{5} s, r^{7} s$	8^{5}

Then by Burnside Formula, the number of orbits $=\left(8^{8}+8+8^{2}+\ldots+8^{4}\right) / 16=1058058$
Else, if each side have different colors, here is the table of fixed points:

$g \in D_{16}$	$\left\|S^{g}\right\|$
e	$8!$
r	0
r^{2}	0
r^{3}	0
r^{4}	0
r^{5}	0
r^{6}	0
r^{7}	0
$s, r^{2} s, r^{4} s, r^{6} s, r^{8} s$	0
$r s, r^{3} s, r^{5} s, r^{7} s$	0

Then by Burnside Formula, the number of orbits $=8!/ 16=2520$

