HOMEWORK 8 - MATH 100A - DUE FRIDAY DECEMBER 1ST

Problem 1. Let $G=\{ \pm 1\}$, and let $\mathbb{R}[x]$ be the set of polynomials in 1 -variable with \mathbb{R}-coefficients. I.e.

$$
\mathbb{R}[x]=\left\{p(x)=a_{0}+\cdots+a_{d} x^{d} \mid a_{i} \in \mathbb{R}\right\} .
$$

Let G act on the set $\mathbb{R}[x]$ by

$$
1 \cdot p(x):=p(x),(-1) \cdot p(x):=p(-x) .
$$

Prove that $\operatorname{Stab}(p(x))=\{ \pm 1\}$ if and only if all the odd coefficients of $p(x)$ are 0 (i.e., if i is odd then $a_{i}=0$).

Problem 2. Let G act on a set S. Let $x, y \in S$ be two elements in the same orbit. I.e.

$$
x \in \operatorname{Orb}(y) .
$$

Prove that the subgroups $\operatorname{Stab}(x), \operatorname{Stab}(y) \leq G$ are conjugate. I.e. there exists $g \in G$ such that

$$
g^{-1} \operatorname{Stab}(x) g=\operatorname{Stab}(y) .
$$

Problem 3. Let G be a group which acts on a set S. Let

$$
\phi: G \rightarrow A(S)
$$

be the corresponding homomorphism. Prove that

$$
\operatorname{ker}(\phi)=\bigcap_{x \in S} \operatorname{Stab}(x)
$$

Problem 4. Use the fact that A_{5} is simple to prove that there are no nontrivial subgroups $H \leq A_{5}$ such that $\left[A_{5}: H\right]<5$. (Hint: look at the action of A_{5} on the left cosets of H.)

Problem 5. Let G be a group which acts on a set S. Let T be an arbitrary set and let $\operatorname{Fun}(S, T)$ be the set of functions from S to T. We define a function

$$
\begin{gathered}
G \times \operatorname{Fun}(S, T) \rightarrow \operatorname{Fun}(S, T) \\
(g, f(x)) \mapsto g \cdot f(x):=f\left(g^{-1} \cdot x\right)
\end{gathered}
$$

Prove that this function is a group action.
Problem 6. Define an action of the group \mathbb{Z} on the set of real numbers \mathbb{R} by

$$
a \cdot b:=2 \pi a+b
$$

where $a \in \mathbb{Z}$, and $b \in \mathbb{R}$. Using the action defined in Problem 5, prove that the function $\sin (x) \in$ $\operatorname{Fun}(\mathbb{R}, \mathbb{R})$ has stabilizer

$$
\operatorname{Stab}(\sin (x))=\mathbb{Z}
$$

Problem 7. Using the action in the previous problem. Let $f(x) \in \operatorname{Fun}(\mathbb{R}, \mathbb{R})$. Prove that $\operatorname{Stab}(f(x))=\mathbb{Z}$ if and only if $f(x)$ is 2π-periodic.

Problem 8. Write down the right hand side of the class equation for the group Q_{8}. I.e. write

$$
8=1+\ldots
$$

where the dots are the sizes of the conjugacy classes.
Problem 9. Write down the right hand side of the class equation for the group D_{8}.
Problem 10. Write down the right hand side of the class equation for $D_{2 n}$. I.e. figure out the sizes of all the conjugacy classes in $D_{2 n}$. (Hint: consider the cases n is even and n is odd separately.)

