1. Let $p(x) = a_0 + \cdots + a_d x^d \in \mathbb{R}[x]$ and suppose $\operatorname{Stab}(p(x)) = \{\pm 1\}$. Note that

$$p(-x) = a_0 + \dots + a_d(-x)^d = a_0 - a_1x + a_2x^2 - \dots + (-1)^d a_dx^d$$

Moreover $p(-x) = (-1) \cdot p(x) = p(x)$, because $-1 \in \text{Stab}(p(x))$. Equating coefficients on both sides shows that $a_i = (-1)^i a_i$ for all *i*, which tells us nothing about the even coefficients, but forces the odd ones to be zero.

Conversely, if p(x) has only even coefficients, then

$$(-1) \cdot p(x) = p(-x) = a_0 + a_2(-x)^2 + \dots + a_d(-x)^d = a_0 + a_2x^2 + \dots + a_dx^d = p(x),$$

so
$$-1 \in \text{Stab}(p(x))$$
 and hence $\text{Stab}(p(x)) = \{\pm 1\}$.

2. We know that $x = g \cdot y$ for some $g \in G$. If $s \in \text{Stab}(x)$ then

$$(g^{-1}sg) \cdot y = g^{-1} \cdot (s \cdot (g \cdot y)) = g^{-1} \cdot (s \cdot x) = g^{-1} \cdot x = g^{-1} \cdot (g \cdot y) = (g^{-1}g) \cdot y = y,$$

so $g^{-1}sg \in \operatorname{Stab}(y)$. This shows that $g^{-1}\operatorname{Stab}(x)g \subseteq \operatorname{Stab}(y)$. Since $y = g^{-1} \cdot x$, the same argument shows that $g\operatorname{Stab}(y)g^{-1} \subseteq \operatorname{Stab}(x)$, and hence $\operatorname{Stab}(y) \subseteq g^{-1}\operatorname{Stab}(x)g$. Therefore $\operatorname{Stab}(y) = g^{-1}\operatorname{Stab}(x)g$.

3.

$$\operatorname{Ker}(\varphi) = \{g \in G \mid \varphi(g) = e_{A(S)}\}\$$
$$= \{g \in G \mid \varphi(g)(x) = x \text{ for all } x \in S\}\$$
$$= \{g \in G \mid g \cdot x = x \text{ for all } x \in S\}\$$
$$= \bigcap_{x \in S} \{g \in G \mid g \cdot x = x\}\$$
$$= \bigcap_{x \in S} \operatorname{Stab}(x).$$

4. Let $H \leq A_5$ and let A_5 act on S := G/H by left multiplication. The corresponding homomorphism $\varphi : A_5 \to A(S)$ is either injective or trivial (sending everything to $e_{A(S)}$), because its kernel is either $\{e\}$ or A_5 . If it is injective, then

$$60 = |A_5| \le |A(S)| = |S|! = [G:H]!,$$

so $[G:H] \ge 5$ (for instance 4! = 24 is too small). Otherwise φ is trivial, so for all $g \in A_5$

$$gH = \varphi(g)(H) = e_{A(S)}(H) = H_A$$

which means $g \in H$. In other words $H = A_5$. Therefore any proper subgroup of A_5 has index at least 5.

5. If $f \in Fun(S, T)$ then $(e \cdot f)(x) = f(e^{-1} \cdot x) = f(e \cdot x) = f(x)$ for all $x \in S$, so $e \cdot f = f$. Moreover, given $g, h \in G$ and $x \in S$

$$(g \cdot (h \cdot f))(x) = (h \cdot f)(g^{-1} \cdot x) = f(h^{-1} \cdot (g^{-1} \cdot x)) = f((h^{-1}g^{-1}) \cdot x) = f((gh)^{-1} \cdot x) = ((gh) \cdot f)(x),$$

so $g \cdot (h \cdot f) = (gh) \cdot f$.

- 6. If $n \in \mathbb{Z}$ then $(n \cdot \sin)(x) = \sin((-n) \cdot x) = \sin(2\pi(-n) + x) = \sin(x)$ for all $x \in \mathbb{R}$, so $n \cdot \sin = \sin$ and $n \in \text{Stab}(\sin)$. Therefore $\text{Stab}(\sin) = \mathbb{Z}$.
- 7. If $f : \mathbb{R} \to \mathbb{R}$ is 2π -periodic, the argument from Problem 6 shows that $\operatorname{Stab}(f) = \mathbb{Z}$. Conversely, if $\operatorname{Stab}(f) = \mathbb{Z}$ then $-1 \in \operatorname{Stab}(f)$, so

$$f(x) = (-1 \cdot f)(x) = f(1 \cdot x) = f(2\pi + x)$$

for all $x \in \mathbb{R}$. In other words *f* is 2π -periodic.

- 8. Since 1 and -1 are central in Q_8 , they are only conjugate to themselves. Moreover C(i) contains $\langle i \rangle = \{1, i, -1, -i\}$, but not j (as ij = k but $ji = j^2k = -k$), so by Lagrange's theorem $C(i) = \langle i \rangle$. Similarly $C(-i) = \langle i \rangle$. The same argument gives $C(g) = \langle g \rangle$ for all $g \notin C(i)$. By the orbit-stabiliser theorem $|Cl(g)| = |Q_8|/|C(g)| = 2$ for all $g \neq \pm 1$, so the class equation for Q_8 is 8 = 1 + 1 + 2 + 2 + 2.
- 9. See Problem 10.
- 10. If $k \in \{0, ..., n-1\}$ then $r^k s = r^{k-1} sr^{-1} = \cdots = sr^{-k}$, so r^k commutes with s only when $r^k = r^{-k}$, or equivalently $r^{2k} = e$. Since r has order n, this means that n divides 2k, which only occurs for $k \in \{0, \frac{n}{2}\}$. In these cases $C(r^k)$ contains s and $\langle r \rangle$, so it has at least n + 1 elements; by Lagrange's theorem $C(r^k) = D_{2n}$. If $k \notin \{0, \frac{n}{2}\}$ then $C(r^k) = \langle r \rangle$ for the same reason. So the conjugacy class of r^k has 1 or 2 elements, depending on whether $k \in \{0, \frac{n}{2}\}$.

Next, note that $r^{-1}(sr^k)r = (r^{-1}s)r^{k+1} = sr^{k+2}$ and $s^{-1}(sr^k)s = r^ks = sr^{-k}$, so

$$\mathrm{Cl}(sr^k) = \{sr^{k+2i} \mid i \in \mathbb{Z}\}.$$

If *n* is odd then this contains sr^i for all $i \in \mathbb{Z}$, so it has *n* elements, and the class equation is

$$2n=1+2+\cdots+2+n,$$

where 2 appears $\frac{n-1}{2}$ times (there is only one 1 because *k* cannot be $\frac{n}{2}$). Otherwise $Cl(sr^k)$ does not contain sr^{k+1} , so $Cl(s) \neq Cl(sr)$ and the class equation is

$$2n = 1 + 1 + 2 + \dots + 2 + \frac{n}{2} + \frac{n}{2},$$

where 2 appears $\frac{n-2}{2}$ times.