1. Let $p(x)=a_{0}+\cdots+a_{d} x^{d} \in \mathbb{R}[x]$ and suppose $\operatorname{Stab}(p(x))=\{ \pm 1\}$. Note that

$$
p(-x)=a_{0}+\cdots+a_{d}(-x)^{d}=a_{0}-a_{1} x+a_{2} x^{2}-\cdots+(-1)^{d} a_{d} x^{d} .
$$

Moreover $p(-x)=(-1) \cdot p(x)=p(x)$, because $-1 \in \operatorname{Stab}(p(x))$. Equating coefficients on both sides shows that $a_{i}=(-1)^{i} a_{i}$ for all i, which tells us nothing about the even coefficients, but forces the odd ones to be zero.

Conversely, if $p(x)$ has only even coefficients, then

$$
(-1) \cdot p(x)=p(-x)=a_{0}+a_{2}(-x)^{2}+\cdots+a_{d}(-x)^{d}=a_{0}+a_{2} x^{2}+\cdots+a_{d} x^{d}=p(x)
$$

so $-1 \in \operatorname{Stab}(p(x))$ and hence $\operatorname{Stab}(p(x))=\{ \pm 1\}$.
2. We know that $x=g \cdot y$ for some $g \in G$. If $s \in \operatorname{Stab}(x)$ then

$$
\left(g^{-1} s g\right) \cdot y=g^{-1} \cdot(s \cdot(g \cdot y))=g^{-1} \cdot(s \cdot x)=g^{-1} \cdot x=g^{-1} \cdot(g \cdot y)=\left(g^{-1} g\right) \cdot y=y
$$

so g^{-1} sg $\in \operatorname{Stab}(y)$. This shows that $g^{-1} \operatorname{Stab}(x) g \subseteq \operatorname{Stab}(y)$. Since $y=g^{-1} \cdot x$, the same argument shows that $g \operatorname{Stab}(y) g^{-1} \subseteq \operatorname{Stab}(x)$, and hence $\operatorname{Stab}(y) \subseteq g^{-1} \operatorname{Stab}(x) g$. Therefore $\operatorname{Stab}(y)=g^{-1} \operatorname{Stab}(x) g$.
3.

$$
\begin{aligned}
\operatorname{Ker}(\varphi) & =\left\{g \in G \mid \varphi(g)=e_{A(S)}\right\} \\
& =\{g \in G \mid \varphi(g)(x)=x \text { for all } x \in S\} \\
& =\{g \in G \mid g \cdot x=x \text { for all } x \in S\} \\
& =\cap_{x \in S}\{g \in G \mid g \cdot x=x\} \\
& =\cap_{x \in S} S \operatorname{Stab}(x)
\end{aligned}
$$

4. Let $H \leq A_{5}$ and let A_{5} act on $S:=G / H$ by left multiplication. The corresponding homomorphism $\varphi: A_{5} \rightarrow A(S)$ is either injective or trivial (sending everything to $e_{A(S)}$), because its kernel is either $\{e\}$ or A_{5}. If it is injective, then

$$
60=\left|A_{5}\right| \leq|A(S)|=|S|!=[G: H]!,
$$

so $[G: H] \geq 5$ (for instance $4!=24$ is too small). Otherwise φ is trivial, so for all $g \in A_{5}$

$$
g H=\varphi(g)(H)=e_{A(S)}(H)=H
$$

which means $g \in H$. In other words $H=A_{5}$. Therefore any proper subgroup of A_{5} has index at least 5 .
5. If $f \in \operatorname{Fun}(S, T)$ then $(e \cdot f)(x)=f\left(e^{-1} \cdot x\right)=f(e \cdot x)=f(x)$ for all $x \in S$, so $e \cdot f=f$. Moreover, given $g, h \in G$ and $x \in S$

$$
\begin{aligned}
(g \cdot(h \cdot f))(x) & =(h \cdot f)\left(g^{-1} \cdot x\right) \\
& =f\left(h^{-1} \cdot\left(g^{-1} \cdot x\right)\right) \\
& =f\left(\left(h^{-1} g^{-1}\right) \cdot x\right) \\
& =f\left((g h)^{-1} \cdot x\right) \\
& =((g h) \cdot f)(x),
\end{aligned}
$$

so $g \cdot(h \cdot f)=(g h) \cdot f$.
6. If $n \in \mathbb{Z}$ then $(n \cdot \sin)(x)=\sin ((-n) \cdot x)=\sin (2 \pi(-n)+x)=\sin (x)$ for all $x \in \mathbb{R}$, so $n \cdot \sin =\sin$ and $n \in \operatorname{Stab}(\sin)$. Therefore $\operatorname{Stab}(\sin)=\mathbb{Z}$.
7. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is 2π-periodic, the argument from Problem 6 shows that $\operatorname{Stab}(f)=\mathbb{Z}$. Conversely, if $\operatorname{Stab}(f)=\mathbb{Z}$ then $-1 \in \operatorname{Stab}(f)$, so

$$
f(x)=(-1 \cdot f)(x)=f(1 \cdot x)=f(2 \pi+x)
$$

for all $x \in \mathbb{R}$. In other words f is 2π-periodic.
8. Since 1 and -1 are central in Q_{8}, they are only conjugate to themselves. Moreover $C(i)$ contains $\langle i\rangle=\{1, i,-1,-i\}$, but not j (as $i j=k$ but $j i=j^{2} k=-k$), so by Lagrange's theorem $C(i)=\langle i\rangle$. Similarly $C(-i)=\langle i\rangle$. The same argument gives $C(g)=\langle g\rangle$ for all $g \notin C(i)$. By the orbit-stabiliser theorem $|\mathrm{Cl}(g)|=\left|Q_{8}\right| /|C(g)|=2$ for all $g \neq \pm 1$, so the class equation for Q_{8} is $8=1+1+2+2+2$.
9. See Problem 10.
10. If $k \in\{0, \ldots, n-1\}$ then $r^{k} s=r^{k-1} s r^{-1}=\cdots=s r^{-k}$, so r^{k} commutes with s only when $r^{k}=r^{-k}$, or equivalently $r^{2 k}=e$. Since r has order n, this means that n divides $2 k$, which only occurs for $k \in\left\{0, \frac{n}{2}\right\}$. In these cases $C\left(r^{k}\right)$ contains s and $\langle r\rangle$, so it has at least $n+1$ elements; by Lagrange's theorem $C\left(r^{k}\right)=D_{2 n}$. If $k \notin\left\{0, \frac{n}{2}\right\}$ then $C\left(r^{k}\right)=\langle r\rangle$ for the same reason. So the conjugacy class of r^{k} has 1 or 2 elements, depending on whether $k \in\left\{0, \frac{n}{2}\right\}$. Next, note that $r^{-1}\left(s r^{k}\right) r=\left(r^{-1} s\right) r^{k+1}=s r^{k+2}$ and $s^{-1}\left(s r^{k}\right) s=r^{k} s=s r^{-k}$, so

$$
\mathrm{Cl}\left(s r^{k}\right)=\left\{s r^{k+2 i} \mid i \in \mathbb{Z}\right\} .
$$

If n is odd then this contains $s r^{i}$ for all $i \in \mathbb{Z}$, so it has n elements, and the class equation is

$$
2 n=1+2+\cdots+2+n
$$

where 2 appears $\frac{n-1}{2}$ times (there is only one 1 because k cannot be $\frac{n}{2}$). Otherwise $\mathrm{Cl}\left(s r^{k}\right)$ does not contain $s r^{k+1}$, so $\mathrm{Cl}(s) \neq \mathrm{Cl}(s r)$ and the class equation is

$$
2 n=1+1+2+\cdots+2+\frac{n}{2}+\frac{n}{2}
$$

where 2 appears $\frac{n-2}{2}$ times.

