
MATH 100A Homework 9 Solutions

1. If ϕ ∈ Aut(Γ) and v ∈ V, then ϕ(v) has the same degree as v (i.e. they are incident to

the same number of edges). In particular, ϕ preserves the central vertex of Γ (which has

degree 4, while the others have degree 3). However, ϕ can send the topmost vertex v

to any of the four outer vertices (for example ϕ could be a rotation). The bottom vertex

must be sent to the one opposite (i.e. not adjacent to)ϕ(v). There are two places whereϕ

can send the leftmost vertex. Both are possible: one is given by the rotation taking v to

ϕ(v), and the other is given by first flipping the graph horizontally. This gives a total of

4× 2 = 8 choices forϕ. In fact Aut(Γ) ∼= D8, because D8 acts faithfully on Γ .

2. In Problem 1 we saw that the central vertex c is fixed by every automorphism of Γ , so

Orb(c) = {c}. By rotating we see that the orbit of the topmost vertex consists of the four

outer vertices. Therefore the action of Aut(Γ) on V has two orbits.

3. Automorphisms of Γ preserve the central vertex c, so they also preserve the set of edges

incident to c. By rotating we see that the orbit of such an edge consists of all such edges,

and similarly the orbit of an “outer edge” (i.e. one not incident to c) consists of all the

outer edges. Therefore the action of Aut(Γ) on E has two orbits.

4. Let S := Fun(V, {1, . . . , k}) be the set of colourings of V with k not necessarily distinct

colours. The number of such colourings up to symmetry is the number of orbits of the

natural action of Aut(Γ) on S, which is given by Burnside’s formula:

1
|Aut(Γ)| ∑

ϕ∈Aut Γ
|Sϕ|.

Note that Se = S has size k5, because each of the five vertices can have any of k colours.

For notational simplicity we will identify Aut(Γ) with D8 (so r is no longer a function

R → R, it is just the corresponding automorphism of Γ ). If a colouring is fixed by r, then

the outer vertices must have the same colour, because the colour of the leftmost vertex

is the same as the topmost, which is the same as the rightmost colour and so on. This

leaves only two choices of colour, so |Sr| = k2. Similarly |Sr3 | = k2. However |Sr2 | = k3,

because r2 just swaps the two pairs of opposite vertices, so there are colourings fixed by

r2 in which the topmost and leftmost vertices (for instance) have different colours. Since s

and sr2 just swap two vertices, |Ss| = |Ssr2 | = k4. On the other hand sr and sr3 (which are

reflections in the diagonal axes) behave more like r2, so |Ssr| = |Ssr3 | = k3. Adding these

up gives the following number of colourings up to symmetry:

k5 + 2k4 + 3k3 + 2k2

8
=

k2(k3 + 2k2 + 3k + 2)
8

=
k2(k + 1)(k2 + k + 2)

8
.

5. Ifϕ ∈ Aut(Γ) is not the identity, then it moves at least one outer vertex v ∈ V, so it also

moves the edge connecting v to the central vertex c. Therefore ϕ does not preserve any
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colouring of E with k distinct colours. In other words, the stabiliser of such a covering is

{e}. By the orbit-stabiliser theorem, the corresponding orbit has size |Aut(Γ)| = 8. The

total number of colourings is k!
(k−8)! (i.e. the number of injective functions E→ {1, . . . , k},

which we interpret as 0 when k < 8), so the number of orbits is

k!
8(k− 8)!

.

6. The key is to notice that there is an automorphism ψ ∈ Aut(Γ) which sends each vertex

to the opposite one (i.e. the one it is not adjacent to). In fact two vertices u, v ∈ V are

adjacent (or equal) if and only if ψ(u) 6= v, so a permutationϕ ∈ A(V) corresponds to an

automorphism iff it preserves the relation ψ(u) = v, i.e. iff ψ(u) = v⇔ ψ(ϕ(u)) = ϕ(v).

The latter statement just means thatψϕ =ϕψ, so Aut(Γ) is precisely the centraliser ofψ in

A(V) (and in particular ψ ∈ Aut(Γ)). The orbit of the topmost vertex therefore contains

the opposite vertex. By rotating, we see that this orbit also contains the other vertices.

Therefore the action of Aut(Γ) on V has only one orbit.

7. As in Problem 6, the orbit of any vertex v ∈ V has size 6. Anyϕ ∈ Stab(v) also fixesψ(v),

becauseϕ(ψ(v)) is not adjacent (or equal) toϕ(v). In other wordsϕ is a permutation of

U := V − {v,ψ(v)}, which commutes with the restriction ψ|U of ψ to U. Conversely, any

such permutation f defines an element of Aut(Γ) that fixes v, essentially because ψ fψ−1

fixes v and ψ(v). Therefore |Stab(v)| = |C(ψ|U)| = |A(U)|/|Cl(ψ|U)| = 4!/3 = 8 (since

ψ|U swaps two pairs of vertices, it has the form (a b)(c d), and hence three conjugates).

By the orbit-stabiliser theorem, it follows that |Aut(Γ)| = 6× 8 = 48.

In fact, we could have shown directly that |Aut(Γ)| = |C(ψ)| = |A(V)|/|Cl(ψ)| = 6!/15,

using the fact that ψ has the form (a b)(c d)(e f ), and hence 15 conjugates (5 choices for

the image of one vertex, and 3 for the next one).

8. Like in Problem 6, the trick is to describe adjacency in a nice way. In this case, every pair of

distinct vertices is adjacent, so every permutation of V corresponds to an automorphism

of Γ . Therefore |Aut(Γ)| = |A(V)| = 4! = 24.

9. You can use Burnside’s formula here (as in Problem 4). The only issue is that Aut(Γ) has

a lot of elements. But since permutations with the same cycle type act in much the same

way, you only need to look at a representative from each of the five conjugacy classes.

There is an even better way. The rough idea is that, because Aut(Γ) is all of A(V), we can

forget which vertex is which and just keep track of which colours appear, and how many

times they do. To a colouring of Γ we can associate a string with 4 stars and k− 1 bars. The

bars divide the string into k pieces, corresponding to the different colours. The number of
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stars between each bar determines the number of times the corresponding colour appears.

For example, if k = 5, two vertices have colour 1, one has colour 2 and one has colour 4,

the corresponding string is ∗ ∗ | ∗ || ∗ |.

Applying a permutation to a colouring does not change the number of times a given

colour appears, so this association gives a well-defined function f from the set of orbits

of our action to the set of strings described above. Every such string arises from some

colouring: just order the vertices in some way and put the colour of the ith star on the

ith vertex. In other words, f is onto. If two colourings determine the same string, there

is an automorphism (i.e. a permutation) sending one to the other: for each colour, the

two sets of vertices with that colour (from the two colourings) have the same size, so we

can pick a bijection between them, and combine these into a bijection V → V. In other

words, f is 1-1. So the number of orbits of our action is the number of strings with 4 stars

and k − 1 bars, which is the number of ways to choose 4 elements of {1, . . . , 4 + k − 1}
(corresponding to the positions of the stars in the string). This number is (4+k−1

4 ) = (k+3
4 ).
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