Problem 1. Consider the following element $\sigma = (145) \circ (78) \circ (257) \in S_8$. Write σ in cycle notation.

Problem 2. Using σ from the previous problem, write down the associated permutation matrix, $A_\sigma \in \text{GL}_n(\mathbb{R})$.

Problem 3. Find the maximum possible order for an element of S_5 and S_6.

Problem 4. Find all the cosets of the subgroup $4\mathbb{Z} \leq \mathbb{Z}$.

Problem 5. Find all the cosets of the subgroup $4\mathbb{Z} \leq 2\mathbb{Z}$.

Problem 6. Find the index of $\langle 3 \rangle$ in the group \mathbb{Z}_{24}.

Problem 7. Find the index of the subgroup $U_4 \leq U_{40}$.

Problem 8. Let G be a group of order pq, where p and q are prime numbers. Prove that every proper subgroup of G is cyclic.

Problem 9. Let G be a finite group of order n. Prove that for all $x \in G$, $x^n = e$.

Problem 10. If G is a finite group, define the exponent of G, to be the number

$$\exp(G) = \min\{k > 0 | x^k = e \text{ for all } x \in G\}.$$

Give an example of a finite group such that $\exp(G) \neq |G|$.