Problem 1. Use the Fundamental Homomorphism Theorem to prove that the quotient group $\mathbb{Z}/2\mathbb{Z}$ is isomorphic to \mathbb{Z}_2.

Problem 2. Use the Fundamental Homomorphism Theorem to prove that the quotient group $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n.

Problem 3. Let $\phi: G \to H$ be a surjective group homomorphism. Prove that if G is a cyclic group, then H is a cyclic group.

Problem 4. Let $\phi: G \to H$ be a surjective group homomorphism. Prove that if G is an abelian group, then H is an abelian group.

Problem 5. Let G be an abelian group. Prove that every subgroup $H \leq G$ is a normal subgroup.

Problem 6. Show that there is only one homomorphism from D_9 to \mathbb{Z}_5.

Problem 7. Show that there is only one homomorphism from S_5 to \mathbb{Z}_7.

Problem 8. Let $\phi: G \to H$ be a group homomorphism, and let $K \leq H$ be a subgroup. In Problem 9 of the previous homework we defined $\phi^{-1}(K)$ and showed that $\phi^{-1}(K)$ is a subgroup of G. If K is a normal subgroup of H, prove that $\phi^{-1}(K)$ is a normal subgroup of G.

Problem 9. Recall that $S^1 = \{z \in \mathbb{C}|z \text{ has distance one from } 0\} \leq \mathbb{C}^*$ is the group of complex numbers with radius 1 with the operation given by complex multiplication. Show that the following function is a group homomorphism:

$$
\psi: \mathbb{R} \to S^1
$$

$$
a \mapsto z = \psi(a)
$$

(where z is the complex number with radius 1 and angle $2\pi a$).

Problem 10. Using the Fundamental Homomorphism Theorem and the homomorphism ψ from the Problem 9, prove that $S^1 \cong \mathbb{R}/\mathbb{Z}$.