Q1. (10pts) A maximally planar graph on $n \geq 3$ vertices is a graph which has the property that the addition of any other edge would make it non-planar. An example of such a graph is the octahedron (below).

a) Show that in a maximally planar graph, every face is a triangle.
b) Conclude that in such a graph, $|E|=3|V|-6$ and $|F|=2|V|-4$.

Q2. (6pts) Draw the dual G^{\prime} of the pseudo/multigraph G below, and state how many vertices, edges and faces each of the two pseudo/multigraphs have.

Q3. (8pts) Suppose G is a maximally planar graph on $n \geq 3$ vertices. Show that if G is 3-colorable, then G has an Eulerian tour.

Q4. (6pts) Find three different feasible flows in the network represented in Figure 8.3 in the textbook. (Use just the picture; ignore Question 8.1).

