Regression model

□ Consider a regression model with additive noise

\[Y = f(X) + \varepsilon, \]

where \(\mathbb{E}(\varepsilon | X = x) = 0. \)

□ We have independent observations \((X_1, Y_1), \ldots, (X_n, Y_n)\) from that model.

Local average

□ Note that

\[f(x) = \mathbb{E}(Y | X = x) \]

□ A local average (a.k.a. moving average) attempts to approximate this conditional expectation directly. It takes the form:

\[\hat{f}(x) = \text{Ave}(Y_i | X_i \in N(x)) \]

where \(N(x) \) is a neighborhood of \(x \).

□ Note that there are two approximations here:

1. The expectation is approximated by an average.
2. The conditioning on \(X = x \) is approximated by conditioning on \(X \in N(x) \), where \(N(x) \) is a region around \(x \).
Choice of neighborhood type
The two main choices are:

- **h-ball neighborhood** where

 \[N(x) = N_h(x) = \{ x' : |x' - x| \leq h \} \]

 This choice implies a constant window width, and this keeps the bias stable. Indeed, the bias comes from averaging over $N(x)$, a region around x instead of averaging responses precisely at x.

- **k-nearest neighbors** where

 \[N(x) = N_k(x) = \{ k \text{ closest points } X_i \text{'s to } x \} \]

 This choice implies a constant variance — assuming the errors have the same variance independent of the predictors.

Kernel regression (a.k.a. weighted local average)

- Choose a kernel function, often of the form

 \[K_h(x, x_0) = D(|x - x_0|/h) \]

 where $D : \mathbb{R}_+ \rightarrow \mathbb{R}$ is non-increasing.

- The Nadaraya-Watson estimator based on that kernel is:

 \[\hat{f}(x) = \frac{\sum_i K_h(x, X_i)Y_i}{\sum_i K_h(x, X_i)} \]

 The nearest neighbor version of this kernel estimator would be of the form:

 \[\hat{f}(x) = \frac{\sum_i \mathbb{1}\{X_i \in N_k(x)\}K_h(x, X_i)Y_i}{\sum_i \mathbb{1}\{X_i \in N_k(x)\}K_h(x, X_i)} \]
Examples of Kernels

Our most basic requirement of D is that it be non-increasing on \mathbb{R}_+.

\begin{itemize}
 \item Uniform: $D(t) = \mathbb{I}\{t < 1\}$ [this leads to the local average]
 \item Triangle: $D(t) = (1 - t)_+$
 \item Epanechnikov: $D(t) = (1 - t^2)_+$
 \item Quartic: $D(t) = (1 - t^2)^2_+$
 \item TriCube: $D(t) = (1 - t^3)^3_+$ [used by the R function \texttt{loess}]
 \item Cosine: $D(t) = \cos\left(\frac{\pi}{2}t\right)\mathbb{I}\{t < 1\}$
 \item Gaussian: $D(t) = e^{-t^2/2}$ [also called heat kernel]
\end{itemize}

They are all supported on $[0, 1]$ except for the Gaussian kernel which is supported on the entire \mathbb{R}^+. However, the Gaussian kernel is fast-decaying.

Kernel methods are linear

\begin{itemize}
 \item Let $\hat{Y}_i = \hat{f}_h(X_i)$ be the usual fitted value for observation i. We have
 \[
 \hat{Y}_i = \frac{\sum_r K_h(X_i, X_r)Y_r}{\sum_r K_h(X_i, X_r)} = \sum_r s_h(i, r)Y_r
 \]
 where
 \[
 s_h(i, r) = \frac{K_h(X_i, X_r)}{\sum_t K_h(X_i, X_t)}
 \]
 Hence,
 \[
 \hat{Y} = S_h Y
 \]
 where $Y = (Y_1, \ldots, Y_n)$ and $\hat{Y} = (\hat{Y}_1, \ldots, \hat{Y}_n)$, and
 \[
 S_h = (s_h(i, r) : i, r \in \{1, \ldots, n\})
 \]
 is the smoother matrix.

 \item The degrees of freedom are defined as
 \[
 df(h) = \text{trace}(S_h)
 \]
 This is in analogy with least squares, where S is the hat matrix.
\end{itemize}
Local Linear Regression (LOESS)

- The local linear estimator is
 \[\hat{f}_h(x) = \hat{\beta}_{h,0}(x) + \hat{\beta}_{h,1}(x)x \]
 where
 \[(\hat{\beta}_{h,0}(x), \hat{\beta}_{h,1}(x)) = \arg \min_{b_0, b_1} \sum_{i=1}^{n} K_h(x, X_i) [Y_i - b_0 - b_1 X_i]^2 \]

- The estimate is linear in the response (with a different smoother matrix) and the degrees of freedom can be defined as before.

Local Polynomial Regression

- The local degree \(p \) polynomial estimator is
 \[\hat{f}_h(x) = \hat{\beta}_{h,0}(x) + \hat{\beta}_{h,1}(x)x + \cdots + \hat{\beta}_{h,p}(x)x^p \]
 where
 \[(\hat{\beta}_{h,0}(x), \ldots, \hat{\beta}_{h,p}(x)) = \arg \min_{b_0, \ldots, b_p} \sum_{i=1}^{n} K_h(x, X_i) [Y_i - b_0 - b_1 X_i - \cdots - b_p X_i^p]^2 \]

- The estimate is linear in the response (with a different smoother matrix) and the degrees of freedom can be defined as before.

Local Regression

- Suppose we assume a linear model in some basis \(\{g_0, \ldots, g_p\} \):
 \[f_\theta(x) = \sum_{j=0}^{p} \theta_j g_j(x) \]

- The local linear estimator is \(\hat{f}_{h}(x) \), where
 \[\hat{\theta}_h(x) = \arg \min_{\theta_0, \ldots, \theta_p} \sum_{i=1}^{n} K_h(x, X_i) [Y_i - f_\theta(X_i)]^2 \]

- The estimate is linear in the response (with a different smoother matrix) and the degrees of freedom can be defined as before.
Choosing of the tuning parameter

□ Assuming a model (when there is one) has been chosen. Then the window width h (also called bandwidth) is the only tuning parameter.
 (This is replaced by the neighborhood size k in the k-NN variant.)

□ This tuning parameter controls the degrees of freedom. The smaller h is, the larger the degrees of freedom. The range is from 1 ($h \to \infty$) to n ($h \to 0$) if all the X_i’s are distinct.

□ This parameter can be chosen to minimize an estimate of prediction error, for example, obtained by cross-validation.