1. (a) Suppose \(ap \neq 0 \) and \((ap)(bp) = 0\). Then \(pq \mid (ap)(bp)\). Since \(\gcd(p, q) = 1, q \mid ab \). Since \(q \) is prime, \(q \mid b \) and so \(bp = 0 \).

(b) It suffices to show that there is a unity. We need \(a \) such that \((ap)(bp) = bp \) modulo \(pq \) for every \(b \). This will happen if \((ap)p = p \) modulo \(pq \), which will happen if \(ap = 1 \) modulo \(q \), which has a solution since \(p \in U_q \).

(c) Every nonzero element of \(S \) is a zero divisor.

2. They are \(M = \{0, 3\} \) with \(\mathbb{Z}_6/M \cong \mathbb{Z}_2 \) via \(\varphi(3 + \mathbb{Z}_6) = 1 \), and \(M = \{0, 2, 4\} \) with \(\mathbb{Z}_6/M \cong \mathbb{Z}_3 \) via \(\varphi(4 + \mathbb{Z}_6) = 1 \).

3. Suppose \(a \) and \(b \) are in the union. Then there are \(j, k \) such that \(a \in I_j \) and \(b \in I_k \). Let \(n = \max(j, k) \). Then \(a, b \in I_n \), which is an ideal. Thus \(ra, a+b \) and \(a-b \) are all in \(I_n \) and hence the union.

4. (a) \(\omega = e^{2\pi i/5} \) is a zero of \(x^5 - 1 \) and the remaining zeroes are \(\omega^k \) for \(0 \leq k < 5 \).

(b) You can cite the result from class: \(U_5 \). Alternatively, you can derive it: To specify an automorphism, it suffices to specify \(\varphi(\omega) \) and the possibilities are \(\varphi_k(\omega) = \omega^k \) where \(0 < k < 5 \).

(c) If you computed the order of the group in (b), you receive full credit, regardless if (b) is correct.
 If you note that \(x^4 + x^3 + x^2 + x + 1 \) is irreducible without proof and give 4 as the answer, you’ll receive 4 points since you did not prove irreducibility.

5. (a) There are various ways to do this. One is to note that the intersection of subgroups is a subgroup and so \(E = E_1 \cap E_2 \) is a subgroup under addition and \(E^* = E_1^* \cap E_2^* \) is a subgroup under multiplication.

(b) Since \([E_1 : F] = [E_1 : E][E : F]\), it follows that \([E : F]\) must divide both 12 and 18. Thus \([E : F]\) must be a divisor of 6. The possibilities are 1, 2, 3, 6.

6. If the side of an equilateral triangle has length \(s \), it’s area is \(\frac{1}{2} \sqrt{3} s^2 \). The side of a square of the same area has length \(\sqrt{\frac{1}{2} \sqrt{3}} s \). Since \(\sqrt{\frac{1}{2} \sqrt{3}} \) is constructible, the answer is yes.

7. \(C_{k+1} \) can always detect up to \(k \) errors, but \(C_k \) is only guaranteed to detect up to \(k-1 \) errors.
 (a) In addition, \(C_3 \) can always correct one error, but \(C_2 \) cannot.
 (b) Nothing additional.

8. We may write \(E = \mathbb{Q}(a) \) for some \(a \in E \). Suppose \(a \) is a zero of \(p(x) \in \mathbb{Q}[x] \). Let \(K \) be the splitting field of \(p(x) \) over \(\mathbb{Q} \). Since elements of \(\text{Gal}(K/\mathbb{Q}) \) permute the zeroes of \(p(x) \), \(\text{Gal}(K/\mathbb{Q}) \) is finite. Since there is a bijection between subgroups of \(\text{Gal}(K/\mathbb{Q}) \) and subfields of \(K \), \(K \) has only a finite number of subfields and hence so does \(E \) since \(E \subseteq K \).