
Solutions for Decision Trees and Recursion

DT-1.1 PREV: C, CC, CCV, CCVC, CCVCC, CCCVCV, CV, CVC, CVCC, CVCCV, CVCV,

CVCVC, V, VC, VCC, VCCV, VCCVC, VCV, VCVC, VCVCC, VCVCV.

POSV: CCVCC, CCVCV, CCVC, CCV, CC, CVCCV, CVCC, CVCVC, CVCV,

CVC, CV, C, VCCVC, VCCV, VCC, VCVCC, VCVCV, VCVC, VCV, VC, V.

BFV: C, V, CC, CV, VC, CCV, CVC, VCC, VCV, CCVC, CVCC, CVCV, VCCV,

VCVC, CCVCC, CCVCV, CVCCV, CVCVC, VCCVC, VCVCC, VCVCV.

DT-1.2 You will need the decision trees for lex and insertion order for permutations of 3 and

4. The text gives the tree for insertion order for 4, from which the tree for 3 can be

found | just stop one level above the leaves of 4. You should construct the tree for

lex order.

(a) To answer this, compare the leaves. For n = 3, permutations � = 123, 132, and

321 have RANKL(�) = RANKI(�). For n = 4 the permutations � = 1234, 1243,

and 4321 have RANKL(�) = RANKI(�).

(b) From the tree for (a), RANKL(2314) = 8.

Rather than draw the large tree for 5, we use a smarter approach to compute

RANKL(45321) = 95. To see the latter, Note that all permutations on 5 that

start with 1, 2, or 3 come before 45321. There are 3�24 = 72 of those. This leads

us to the subtree for permutations of f1; 2; 3; 5g in lex order. It looks just like the

decision tree for 4 with 4 replaced by 5. (Why is this?) Since RANKL(4321) = 23,

this makes a total of 72 + 23 = 95 permutations that come before 45321 and so

RANKL(45321) = 95. If you �nd this unclear, you should try to draw a picture

to help you understand it.

(c) RANKI(2314) = 16. What about RANKI(45321)? First does 1, then 2, and so

on. After have done all but 5, we are at the rightmost leaf of the tree for 4. It

has 23 leaves to the left of it. When we insert 5, each of these leaves is replaced

by 5 new leaves because there are 5 places to insert 5. This gives us 5� 23 = 115

leaves. Finally, of the 5 places we could insert 5 into 4321, we chose the 4th so

there are 3 additional leaves to the left of it. Thus the rank is 115 = 3 = 118.

(d) RANKL(3241) = 15.

(e) RANKI(4213) = 15.

(f) The �rst 24 permutations on 5 consist of 1 followed by a permutation on f2; 3; 4; 5g.

Since our goal is the permutation of rank 15, it is in this set. By (d), RANKL of

3241 is 15 for n = 4. Thus RANKL(4352) = 15 in the lex list of permutations on

f2; 3; 4; 5g.

c Edward A. Bender & S. Gill Williamson 2001. All rights reserved.
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DT-1.3 Here is the tree

ABABAB ABABBA, ABBABA,  ABBABB BABABA BABABB BABBAB BBABAB BBABBA

The list in lex order:
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DT-1.4 Here is a decision tree for D(64). The leaves correspond to the elements of D(64) in
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lex order, obtained by reading the sequence of vertex labels from the root to the leaf.

1111111111 22

2

2

22

2

222 33

3

3

3

33 4

4

4

4

5

5 6

(a) The rank of 5431 is 3. The rank of 6531 is 10.

(b) 4321 has rank 0 and 6431 has rank 7.

(c) The �rst 5 leaves correspond to D(54).

(d) D(64) is bijectively equivalent to the set, P(6; 4), of all subsets of 6 of size 4.

Under this bijection, an element such as 5431 2 D(64) corresponds to the set

f1; 3; 4; 5g.

DT-1.5 For PREV and POSV, omit Step 2. For PREV, begin Step 3 with the sentence

\If you have not used any edges leading out from the vertex, list the vertex."

For POSV, change Step 3 to

\If there are no unused edges leading out from the vertex, list the vertex

and go to Step 4; otherwise, go to Step 5."

DT-1.6 The problem is that the eight hibachi grills, though di�erent as domino coverings, are

all equivalent or \isomorphic" once they are made into grills. All eight in the �rst row

below can be gotten by rotating and/or turning over the �rst grill.

vvhvvhhh vvhhvhvh hhvvhvvh vhvhhvvh hvvhvhvh hvvvvhhh vhvhvvhh hhhvvvvh

(1) (2) (3) (4) (5) (6) (7) (8) (9)
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There are nine di�erent grills as shown in the picture. These nine might be called a

\representative system" for the domino coverings up to \grill equivalence." Note that

these nine representatives are listed in lex order according to their codes (starting with

hhhhhhhh and ending with hvvhvvhh). They each have another interesting property:

each one is lexicographically minimal among all patterns equivalent to it. The one we

selected from the list of \screwup" grills (number (6)) has code hhhvvvvh and that is

minimal among all codes on the �rst row of coverings.

This problem is representative of an important class of problems called \isomorph

rejection problems." The technique we have illustrated, selecting a lex minimal system

of representatives up to some sort of equivalence relation, is an important technique

in this subject.

DT-2.1 (a) Let A(n) be the assertion that G(n) = (1� An)=(1� A). When n = 1, G(1) = 1

and (1�An)=(1�A) = 1, so the base case is proved. For n > 1, we have

G(n) = 1 +A+A2 + : : : +An�1 by de�nition,

= (1 + A+ A2 + : : : +An�2) + An�1

=
1�An�1

1� A
+An�1 by A(n� 1),

=
1�An

1� A
by algebra.

(b) The recursion can be found by looking at the de�nition or by examining the proof

in (a). It is G(1) = 1 and, for n > 1, G(n) = G(n� 1) + An�1.

(c) Applying the theorem is straightforward. The formula equals 1 when n = 1, which

agrees with G(1). By some simple algebra

1�An�1

1�A
+ An�1 =

(1� An�1) + (An�1 �An)

1�A
=

1�An

1�A
;

and so the formula satis�es the recursion.

(d) Letting A = y=x and cleaning up some fractions

1� (y=x)n

1� y=x
=
yn � xn

x� y
xn�1:

Let n = k + 1, multiply by xk and use the geometric series to obtain

xk+1D � yk+1

x� y
= xk

�
1 + (y=x) + (y=x)2 + � � � + (y=x)k

�

= xky0 + xk�1y1 + � � � + x0yk:

DT-2.2 We will Theorem 3 to prove our conjectures are correct.

(a) Writing out the �rst few terms gives A, A=(1 +A), A=(1 + 2A), A=(1 + 3A), etc.

It appears that ak = A=(1 + kA). Since A > 0, the denominators are never zero.

{ 4{



Solutions for Decision Trees and Recursion

When k = 0, A=(1 + kA) = A, which satis�es the initial condition. We check the

recursion:

A=(1 + (k � 1)A)

1 + A=(1 + (k � 1)A)
=

A

(1 + (k � 1)A) +A
= A=(1 + kA);

which is the conjectured value for ak.

(b) Writing out the �rst few terms gives C, AC +B, A2C +AB +B, A3C +A2B +

AB +B, A4C + A3B + A2B + AB + B, etc. Here is one possible formula:

ak = AkC +B(1 + A+ A2 + : : : +Ak�1) :

Here is a second possibility:

ak = AkC + B

�
1�Ak

1� A

�
:

Using the previous exercise, you can see that they are equal. We leave it to you to

give a proof of correctness for both formulas, without using the previous exercise.

DT-2.3 We use Theorem 3. The formula gives the correct value for k = 0. The recursion

checks because

A+B(k � 1)
�
((k � 1)2 � 1)=3

�
+ Bk(k� 1) = A+B(k � 1)

�
(k2 � 2k + 1� 1)� 3k

�

= A+B(k � 1)k(k+ 1)=3

= A+Bk(k2 � 1)=3:

This completes the proof.

DT-2.4 (a) We apply Theorem 3, but there is a little complication: The formula starts at

k = 1, so we cannot check the recursion for k = 1. Thus we need a1 to be the initial

condition. From the recursion, a1 = 2A � C, which we take as our initial condition

and use the recursion for k > 1. You should verify that the formula gives a1 correctly

and that the formula satis�es the recursion when k > 1.

(b) From the last part of Exercise 1 with x = 2 and y = �1, we obtain

ak = A

�
2k+1 � (�1)k+1

3

�
+ (�1)k(C �A) :

Make sure you can do the calculations to derive this.

DT-2.5 The characteristic equation is r2 � 2r + 1 = (r � 1)2 = 0. Thus, r = s = 1. So, we

have the two sequences 0; s; 2s2; 3s3; 4s4 : : : and 1; s; s2; s3; : : : as solutions. We need

to satisfy the initial conditions. We have

� + 0� = 2

s� + s� = 1

where s = 1. We easily obtain � = 2 and � = �1. Thus, the sequence

2; 1; 0;�1;�2;�3;�4; : : : is the required solution.
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DT-2.6 (a) The initial condition (D0 = 1) is correct. We want to use induction to prove the

recursion. The base case for the induction proof need not be the same as the base case

for the recursive equation. In fact, it is not. We could simply tell you what it is, but

it's better to discover it. The discovery comes when we attempt a proof and see what

conditions we need on n. Let A(n) be \Dn = Dn�1 + (�1)n." We have

Dn = (n� 1)Dn�1 + (n� 1)Dn�2 for n � 2 (�)

and we want to somehow convert this to Dn = nDn�1+(�1)n. Thus we must replace

Dn�2 by either Dn or Dn�1 using A(k) with k < n. Since A(n � 1) involved Dn�1

and Dn�2, we can solve it for the latter in terms of the former: (n � 1)Dn�2 =

Dn�1 � (�1)n�1, provided n� 1 � 1. Combining this with (*) we have

Dn = (n� 1)Dn�1 +Dn�1 � (�1)n�1 = nDn�1 + (�1)n for n � 2.

Thus n = 1 is the base case for the induction proof. It is easy to check that D1 =

D0 + (�1)1.

(b) The initial condition is for n = 0 and it is easily checked. For n > 0, it suÆces to

verify that the formula satis�es the recursion. Here it is

n

�
(n� 1)!

n�1X
k=0

(�1)k

k!

�
+ (�1)n = n!

n�1X
k=0

(�1)k

k!
+ n!

(�1)n

n!
= n!

nX
k=0

(�1)k

k!
:

(c) This is like (b). The initial conditions are easy. We check the recursion. With

some algebra,

(n� 1)

�
(n� 1)!

n�1X
k=0

(�1)k

k!
(n� 2)!

n�2X
k=0

(�1)k

k!

�

= (n� 1)

��
(n� 1)! + (n� 2)!

� n�2X
k=0

(�1)k

k!
+ (n� 1)!

(�1)n�1

(n� 1)!

�

= n!

n�2X
k=0

(�1)k

k!
+ (n� 1)(�1)n�1: (�)

We need this to equal n!
Pn

k=0(�1)
k=k!. Since this sum has two more terms than the

sum in (�), we will have equality if and only if the last two terms equal (n�1)(�1)n�1.

That is, we need

(n� 1)(�1)n�1 = n!
�
(�1)n�1=(n� 1)! + (�1)n=n!

�
:

With some algebra, we can rearrange the right side as

(�1)n�1n+ (�1)n = (�1)n�1(n� 1)

and so we are done.

DT-3.1 We refer to the decision tree in Example 17. The permutation 87612345 speci�es, by

edge labels, a path from the root L(8) to a leaf in the decision tree. To compute the
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rank, we must compute the number of leaves \abandoned" by each edge just as was

done in Example 21. There are eight edges in the path with the number of abandoned

leaves equal to 7�7!+6�6!+5�5!+0+0+0+0+0 = 35; 280+4; 320+600 = 40; 200. This

is the RANK of 87612345 in the lex list of permutations on 8. Note that 8! = 40; 320, so

the RANK 20,160 permutation is the �rst one of the second half of the list: 51234678.

DT-3.2 (a) The corresponding path in the decision tree is H(8, S, E, G), H(7, E, S, G),

H(6, S, E, G), H(5, S, G, E), H(4, S, E, G), H(3, E, S, G), E
3
! G.

(b) The move that produced the con�guration of (a) was E
3
! G. The con�guration

prior to that was Pole S: 6, 5, 2, 1; Pole E: 3; Pole G: 8, 7, 4.

(c) The move just prior to E
3
! G was G

1
! S. This is seen from the decision tree

structure or from the fact that the smallest washer, number 1, moves every other time

in the pattern S, E, G, S, E, G, etc. The con�guration just prior to the move G
1
! S

was Pole S: 6, 5, 2; Pole E: 3; Pole G: 8, 7, 4, 1.

(d) The next move after E
3
! G will be another move by washer 1 in its tiresome cycle

S, E, G, S, E, G, etc. That will be S
1
! E.

(e) The RANK of the move that produced (a) can be computed by summing the

abandoned leaves associated with each edge of the path (a) in the decision tree. (See

Example 21.) There are six edges in the path of part (a) with associated abandoned

leaves being 27 = 128, 26 = 64, 0, 0, 23 = 8, 22 � 1 = 3. The total is 203.

DT-3.3 (a) 110010000 is followed by 110110000 and preceded by 110010001.

(b) The �rst element of the second half of the list corresponds to a path in the decision

tree that starts with a right-sloping edge and has all of the remaining eight edges

left-sloping. That element is 110000000.

(c) Each right-sloping edge abandons 2n�k leaves, if the edge is the kth one in the

path. For the path 111111111 the right-sloping edges are numbers 1, 3, 5, 7, and 9

(remember, after the �rst edge, a label 1 causes the direction of the path to change).

Thus, the rank of 111111111 is 28 + 26 + 24 + 22 + 20 = 341.

(d) To compute the element of RANK 372, we �rst compute the path in the decision

tree that corresponds to the element. The �rst edge must be (1) right sloping (aban-

doning 256 leaves), since the largest rank of any leaf at the end of a path that starts left

sloping is 28 � 1 = 255. We apply this same reasoning recursively. The right sloping

edge leads to 256 leaves. We wish to �nd the leaf of RANK 372� 256 = 116 in that

list of 256 leaves. That means the second edge must be (1) left sloping (abandoning

0 leaves), so our path starts o� (1) right sloping, (1) left sloping. This path can

access 128 leaves. We want the leaf of RANK 116 � 0 in this list. Thus we must

access a leaf in the second half of the list of 128, so the third edge must be (1) right

sloping (abandoning 64 leaves). In that second half we must �nd the leaf of RANK

116� 64 = 52.

Our path is now (1) right sloping, (1) left sloping, (1) right sloping. Fol-

lowing that path leads to 64 leaves of which we want the leaf of RANK 52. Thus,

the fourth edge must be (0) right sloping (abandoning 32 leaves). This path of

four edges leads to 32 leaves of which we must �nd the one of RANK 52 � 32 = 20.

Thus the �fth edge must also be (0) right sloping (abandoning 16 leaves). Thus we
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must �nd the leaf of RANK 20 � 16 = 4. This means that the sixth edge must be

(1) left sloping (abandoning 0 leaves), the seventh edge must be (1) right sloping

(abandoning 4 leaves), and the last two edges must be left sloping: (1) left sloping

(abandoning 0 leaves), (0) left sloping (abandoning 0 leaves). Thus the �nal path is

111001110.

DT-3.4 (a) Let A(n) be the assertion \H(n,S,E,G) takes the least number of moves." Clearly

A(1) is true since only one move is required. We now prove A(n). Note that to do

S
n
! G we must �rst move all the other washers to pole E. They can be stacked only

one way on pole E, so moving the washers from S to E requires using a solution to

the Towers of Hanoi problem for n� 1 washers. By A(n� 1), this is done in the least

number of moves by H(n � 1,S,G,E). Similarly, H(n � 1,E,S,G) moves these washers

to G in the least number of moves.

(b) For n = 1, f1 = 1: S
1
! G

For n = 2, f2 = 3: S
1
! E; S

2
! G; E

1
! G

For n = 3, f3 = 5: S
1
! E; S

2
! F; S

1
! G; F

2
! G; E

1
! G

(c) Let s(p; q) be the number of moves for G(p, q, S, E, F, G). The recursive step in the

problem is described for p > 0, so the simplest case is p = 0 and s(0; q) = h(q) = 2q�1.

In that case, (i) tells us what to do.

Otherwise, the number of moves in (ii) is s(p; q) = 2s(i; j) + hq. To �nd the

minimum, we look at all allowed values of i and j, choose those for which s(i; j) is a

minimum. This choice of i and j, when used in (ii) tells us which moves to make. In

the following table, numbers on the rows refer to p and those on the columns refer to q.

Except for the sp column, then entries are s(p; q). The p = 0 row is hq by (i). To �nd

s(p; q) for p > 0, we use (ii). To do this, we look along the diagonal whose indices sum

to p, choose the minimum (It's location is (i; j).), double it and add hq. For example,

s(5; 2) is found by taking the minimum of the diagonal entries at (0,5), (1,4), (2,3),

(3,2), and (4,1). Since these entries are 31, 17, 13, 13, and 19, the minimum is 13.

Since this occurs at (2,3) and (3,2), we have a choice for (i; j). Either one gives us

2� 13 + h2 = 29 moves. To compute sn we simply look along the p+ q = n diagonal

and choose the minimum.

sp 1 2 3 4 5 6 (values of q)

0 1 3 7 15 31 63 (s(0; q) = hq)

1 1 3 5 9 17 33 65

2 3 7 9 13 21 27

3 5 11 13 17 25

4 9 19 21 25

5 13 27 29

6 17 35 Column labels are p.

(d) From the description of the algorithm,

� s(p; q) = 2min s(i; j) + hq, where the minimimum is over i+ j = p and

� sn = min s(p; q), where the minimum is over p+ q = n.

{ 8{



Solutions for Decision Trees and Recursion

Putting these together gives us s(p; q) = 2sp + hq and so sn = min(2sp + hq). The

initial condition is s0 = 0. In summary

sn =

8<
:
0 if n = 0,

min
p+q=n
q>0

(2sp + hq) if n > 0.

(e) Change the recursive procedure in the algorithm to use the moves for fp instead of

using those for s(p; q). It follows that we can solve the puzzle in 2fn�j + hj moves.

DT-4.1 When there is replacement, the result of the �rst choice does not matter since the ball

is placed back in the box. Hence the answer to both parts of (a) is 3=7.

(b) If the �rst ball is green, we are drawing a ball from three white and three green

and so the probability is 3=6 = 1=2. If the �rst ball is white, we are drawing a ball

from two white and four green and so the probability is 2=6 = 1=3.

DT-4.2 There are �ve ways to get a total of six: 1 + 5, 2 + 4, 3 + 3, 4 + 2, and 5 + 1. All

�ve are equally likely and so each outcome has probability 1=5. We get the answers

by counting the number that satisfy the given conditions and multiplying by 1=5:

(a) 1=5, (b) 2=5, (c) 3=5.

DT-4.3 Here is the decision tree for this problem

P E B H

Root

P R P ~R E R E ~R B R B ~R H R H ~R

.10 .40 .20 .30

.90 .30.50.50 .70 .20.10

.09.01 .20.20 .06 .06 .24.14

.80

(a) We want to compute the conditional probability that a student is a humanities

major, given that that student has read Hamlet. In the decision tree, if we follow

the path from the Root to H to H \ R, we get a probability of :06 at the leaf.

We must divide this by the sum over all probabilities of such paths that end at

X \ R (as opposed to X\ � R). That sum is 0:01 + 0:20 + 0:06 + 0:06 = 0:33.

The answer is 0:06=0:33 = 0:182.

(b) We compute the probabilities that a student has not read Hamlet and is a P

(Physical Science) or E (Engineering) major: 0:09+ 0:20 = 0:29. We must divide

this by the sum over all probabilities of such paths that end at X\ � R (as

opposed to X \R). The answer is 0:29=0:67 = 0:433.

DT-4.4 Here is a decision tree where the vertices are urn compositions. The edges incident

on the root are labeled with the outcome sets of the die and the probabilities that

these sets occur. The edges incident on the leaves are labeled with the color of the ball
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drawn and the probability that such a ball is drawn. The leaves are labeled with the

product of the probabilities on the edges leading from the root to that leaf.

[2R, 1W]

[3R, 1W]

[1R, 1W]

[2R, 0W][1R, 1W] [4R, 0W]

[4R, 1W]

2/3

2/3

8/15 2/15

1/5

1/9

4/5

1/3

1/3

2/9

{1,2,} {3,4,5,6}

RR WW

(a) To compute the conditional probability that a 1 or 2 appeared, given that a red

ball was drawn, we take the probability 2=9 that a 1 or 2 appeared and a red

ball was drawn and divide by the total probability that a red ball was drawn:

2=9 + 8=15 = 34=45. The answer is 5=17 = 0:294.

(b) We divide the probability that a 1 or 2 appeared and the �nal composition had

more than one red ball (1=9) by the sum of the probabilities where the �nal

composition had more than one red ball : 1=9 + 8=15 + 2=15 = 7=9 = 0:78.

DT-4.5 A decision tree is shown below. The values of the random variable X are shown just

below the amount remaining in the pot associated with each leaf. To compute E(X)

we sum the values of X times the product of the probabilities along the path from the

root to that value of X. Thus, we get

E(X) = 1� (1=2) + 2� (1=8) + (2 + 3 + 3 + 3 + 4 + 5)� (1=16) = 2 :

1

1

1

1

22

2

2

2

3

3

3

3

3 3

3 5

5

4

4

1/21/2

1/2

1/21/21/2

1/21/2

1/2 1/2 1/2

1/2

1/21/2

0

0

0
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DT-4.6 A decision tree is shown below. Under the leaves is the length of the game (the height

of the leaf). The expected length of the game is the sum of the products of the

probabilities on the edges of each path to a leaf times the height of that leaf:

2((1=3)2 + (2=3)2)+

4((1=3)3(2=3) + (1=3)2(2=3)2 + (1=3)2(2=3)2 + (1=3)(2=3)3)+

3((1=3)(2=3)2+ (1=3)2(2=3) :

The expected number of games is about 2.69.

2

4 4

3 3

4 4

2

B

B

B

B

B

B

B

A

A

A

A

A

A

A

1/3

1/3

1/3

1/3

1/3

1/3

1/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

DT-4.7 Let pk denote the probability that the gambler is ruined if he starts with 0 � k � Q

dollars. Note that p0 = 1 and pQ = 0. Assume 1 < k � Q. Then the recurrence

relation pk�1 = (1=2)pk + (1=2)pk�2 holds. Solving for pk gives pk = 2pk�1 � pk�2.

This looks familiar. It is a two term linear recurrence relation. But the setup was a

little strange! We would expect to know p0 and p1 and would expect the values of pk
to make sense for all k � 0. But here we have an interpretation of the pk only for

0 � k � Q and we know p0 and pQ instead of p0 and p1. Such a situation is not for

faint-hearted students.

We are going to keep going as if we knew what we were doing. The characteristic

equation is r2 � 2r + 1 = 0. There is one root, r = 1. That means that the sequence

ak = 1, for all k = 0; 1; 2; : : :, is a solution and so is bk = k, for k = 0; 1; 2; : : :. We need

to �nd A and B such that Aa0 + Bb0 = 1 and AaQ + BbQ = 0. We �nd that A = 1

and B = �1=Q. Thus we have the general solution

pk = 1�
k

Q
=
Q� k

Q
qk =

k

Q
:
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Solutions for Decision Trees and Recursion

Note that pk is de�ned for all k � 0 like it would be for any such linear two term

recurrence. The fact that we are only interested in it for 0 � k � Q is no problem to

the theory.

Suppose a rich student, Brently Q. Snodgrass the III, has 8; 000 dollars and he

wants to play the coin toss game to make 10; 000 dollars so he has 2; 000 his parents

don't know about. His probabililty of being ruined is (10; 000 � 8000)=10000 = 1=5.

His probability of getting his extra 2000 dollars is 4=5. A poor student who only had

100 dollars and wanted to make 2000 dollars would have a probability of (2; 100 �

100)=2; 100 = 0:95 of being ruined. Life isn't fair.

There is one consolation. The expected number of times Brently will have to toss

the coin to earn his 2,000 dollars is 16; 000; 000. It will take him 69.4 weeks tossing 40

hours per week, one toss every 10 seconds. If he does get his 2000 dollars, he will have

been working as a \coin tosser" for over a year at a salary of 72 cents per hour. He

should get a minimum wage job instead!
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