
Solutions for Functions

Fn-1.1 (a) We know the domain and range of f . f is not an injection. Since no order is given

for the domain, the attempt to specify f in one-line notation is meaningless (the ASCII

order +; <;>; ?, is a possibility, but is unusual enough in this context that explicitly

specifying it would be essential). If the attempt at speci�cation makes any sense, it

tells us that f is a surjection. We cannot give it in two-line form since we don't know

the function.

(b) We know the domain and range of f and the domain has an implicit order. Thus

the one-line notation speci�es f . It is an injection but not a surjection. In two-line

form it is

�
1 2 3

? < +

�
.

(c) This function is speci�ed and is an injection. In one-line notation it would be

(4,3,2), and, in two-line notation,

�
1 2 3

4 3 2

�
.

Fn-1.2 (a) If f is an injection, then jAj � jBj. Solution: Since f is an injection, every element

of A maps to a di�erent element of B. Thus B must have at least as many elements

as A.

(b) If f is a surjection, then jAj � jBj. Solution: Since f is a surjection, every element

of B is the image of at least one element of A. Thus A must have at least as many

elements as B.

(c) If f is a bijection, then jAj = jBj. Solution: Combine the two previous results.

(d) If jAj = jBj, then f is an injection if and only if it is a surjection. Solution:

Suppose that f is an injection and not a surjection. Then there is some b 2 B which is

not the image of any element of A under f . Hence f is an injection from A to B�fbg.
By (a), jAj � jB � fbgj < jBj, contradicting jAj = jBj.
Now suppose that f is a surjection and not an injection. Then there are a; a0 2 A such

that f(a) = f(a0). Consider the function f with domain restricted to A � fa0g. It is
still a surjection to B and so by (b) jBj � jA� fa0gj < jAj , contradicting jAj = jBj.

(e) If jAj = jBj, then f is a bijection if and only if it is an injection or it is a surjection.

Solution: By the previous part, if f is either an injection or a surjection, then it is

both, which is the de�nition of a bijection.

Fn-1.3 (a) Since ID numbers are unique and every student has one, this is a bijection.

(b) This is a function since each student is born exactly once. It is not an surjection

since D includes dates that could not possibly be the birthday of any student; e.g., it

includes yesterday's date. It is not an injection. Why? You may very well know of two

people with the same birthday. If you don't, consider this. Most entering freshman

are between 18 and 19 years of age. Consider the set F of those freshman and their

possible birth dates. The maximum number of possible birth dates is 366+365, which

is smaller than the size of the set F . Thus, when we look a the function on F it is not

injective.

(c) This is not a function. It is not de�ned for some dates because no student was

born on that date. For example, D includes yesterday's date
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(d) This is not a function because there are students whose GPAs are outside the range

2.0 to 3.5. (We cannot prove this without student record information, but we can be

sure it is true.)

(e) We cannot prove that it is a function without gaining access to student records;

however, we can be sure that it is a function since we can be sure that each of the

16 GPAs between 2.0 and 3.5 will have been obtained by many students. It is not

a surjection since the codomain is larger than the domain. It is an injection since a

student has only one GPA.

Fn-2.1 (a) For (1,5,7,8) (2,3) (4) (6):

�
1 2 3 4 5 6 7 8

5 3 2 4 7 6 8 1

�
is the two-line form and

(5,3,2,4,7,6,8,1) is the one-line form. (We'll omit the two-line form in the future

since it is simply the one-line form with 1; 2; : : : placed above it.) The inverse is

(1,8,7,5) (2,3) (4) (6) in cycle form and (8,3,2,4,1,6,5,7) in one-line form.

(b) For

�
1 2 3 4 5 6 7 8

8 3 7 2 6 4 5 1

�
: The cycle form is (1,8) (2,3,7,5,6,4). Inverse:

cycle form is (1,8) (2,4,6,5,7,3); one-line form is (8,4,2,6,7,5,3,1).

(c) For (5,4,3,2,1), which is in one-line form: The cycle form is (1,5) (2,4) (3). The

permutation is its own inverse.

(d) (5,4,3,2,1), which is in cycle form: This is not the standard form for cycle form.

Standard form is (1,5,4,3,2). The one-line form is (5,1,2,3,4). The inverse is (1,2,3,4,5)

in cycle form and (2,3,4,5,1) in one-line form.

Fn-2.2 Write one entire set of interchanges as a permutation in cycle form. The interchanges

can be written as (1,3), (1,4) and (2,3). Thus the entire set gives 1 ! 3 ! 2, 2 ! 3,

3! 1! 4 and 4! 1. In cycle form this is (1,2,3,4). Thus �ve applications takes 1 to

2.

Fn-2.3 (a) Imagine writing the permutation in cycle form. Look at the cycle containing 1,

starting with 1. There are n � 1 choices for the second element of the cycle AND

then n� 2 choices for the third element AND � � � AND (n� k+ 1) choices for the kth

element. Prove that the number of permutations in which the cycle generated by 1

has length n is (n � 1)!: The answer is given by the Rule of Product and the above

result with k = n.

(b) For how many permutations does the cycle generated by 1 have length k? We

write the cycle containing 1 in cycle form as above AND then permute the remaining

n� k elements of n in any fashion. For the k long cycle containing 1, the above result

gives
(n�1)!

(n�k)!
choices. There are (n� k)! permutations on a set of size n � k. Putting

this all together using the Rule of Product, we get (n � 1)!, a result which does not

depend on k.

(c) Since 1 must belong to some cycle and the possible cycle lengths are 1; 2; : : : ; n,

summing the answer to (b) over 1 � k � n will count all permutations of n exactly

once. In our case, the sum is (n� 1)! + � � � + (n� 1)! = n� (n� 1)! = n!.

This problem has shown that if you pick a random element in a permutation of an

n-set, then the length of the cycle it belongs to is equally likely to be any of the values

from 1 to n.
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Fn-3.1 (a) The domain and range of f are speci�ed and f takes on exactly two distinct values.

f is not an injection. Since we don't know the values f takes, f is not completely

speci�ed; however, it cannot be a surjection because it would have to take on all four

values in its range.

(b) Since each block in the coimage has just one element, f is an injection. Since

jCoimage(f)j = 5 = jrange of f j, f is a surjection. Thus f is a bijection and, since the

range and domain are the same, f is a permutation. In spite of all this, we don't know

the function; for example, we don't know f(1), but only that it di�ers from all other

values of f .

(c) We know the domain and range of f . From f�1(2) and f�1(4), we can determine

the values f takes on the union f�1(2) [ f�1(4) = 5. Thus we know f completely. It

is neither a surjection nor an injection.

(d) This function is a surjection, cannot be an injection and has no values speci�ed.

(e) This speci�cation is nonsense. Since the image is a subset of the range, it cannot

have more than four elements.

(f) This speci�cation is nonsense. The number of blocks in the coimage of f equals

the number of elements in the image of f , which cannot exceed four.

Fn-3.2 (a) The coimage of a function is a partition of the domain with one block for each

element of Image(f).

(b) You can argue this directly or apply the previous result. In the latter case, note

that since Coimage(f) is a partition of A, jCoimage(f)j = jAj if and only if each block

of Coimage(f) contains just one element. On the other hand, f is an injection if and

only if no two elements of A belong to the same block of Coimage(f).

(c) By the �rst part, this says that jImagej = jBj. Since Image(f) is a subset of B, it

must equal B.

Fn-3.3 (a) The list is 321; 421; 431; 432; 521; 531; 532; 541; 542; 543.

(b) The �rst number is
�
x1�1
3

�
+
�
x2�1
2

�
+
�
x3�1
1

�
+ 1 =

�
2
3

�
+
�
1
2

�
+
�
0
1

�
+ 1 = 1. The

last number is
�
4
3

�
+
�
3
2

�
+
�
2
1

�
+ 1 = 10. The numbers

�
x1�1
3

�
+
�
x2�1
2

�
+
�
x3�1
1

�
+ 1

are, consecutively, 1; 2; : : : 10 and represent the positions of the corresponding strings

x1x2x3 in the list.

(c) The list is 123; 124; 125; 134; 135; 145; 234; 245; 345.

(d) If, starting with the list of (c), you form the list (6� x1)(6� x2)(6� x3), you get

543; 542; 541; 532; 531; 521; 432; 431; 421; 321 which is the list of (a) in reverse order.

Thus the formula of (b) gives the positions �(xx; x2; x3) in reverse order of the list (c).

Subtract 11� �(xx; x2; x3) to get the position in forward order.

Fn-3.4 (a) The �rst distribution of balls to boxes corresponds to the strictly decreasing string

863. The next such string in lex order on all strictly decreasing strings of lengh 3

from 8 is 864. To get the corresponding distribution, place the three moveable box

boundaries under positions 8, 6, and 4 and put balls under all other positions in 8. The

predecessor to 863 is 862. The second distribution corresponds to 542. Its successor is

543, its predecessor is 541.

(b) The formula p(x1; x2; x3) =
�
x1�1
3

�
+
�
x2�1
2

�
+
�
x3�1
1

�
+ 1 gives the position of

the string x1x2x3 in the list of decreasing strings of length three from 8. We solve
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the equation p(x1; x2; x3) =
�
8
3

�
=2 = 28 for the variables x1; x2; x3. Equivalently, �nd

x1; x2; x3 such that
�
x1�1
3

�
+
�
x2�1
2

�
+
�
x3�1
1

�
= 27. First try to choose x1�1 as large as

possible so that
�
x1�1
3

�
� 27. A little checking gives x1�1 = 6, with

�
x1�1
3

�
=
�
6
3

�
= 20.

Subtracting, 27� 20 = 7. Now choose x2 � 1 as large as possible so that
�
x1�1
2

�
� 7.

This gives x2 � 1 = 4 with
�
x2�1
2

�
=
�
4
2

�
= 6. Now subtract 7 � 6 = 1 and choose

x3 � 1 = 1. Thus, (x1; x2; x3) = (7; 5; 2). The �rst element in the second half of the

list is the next one in lex order after 752 which is 753. The corresponding distributions

of ball into boxes can be obtained in the usual way.

Fn-3.5 (a) 2; 2; 3; 3 is not a restricted growth (RG) function because it doesn't start with 1.

1; 2; 3; 3; 2; 1 is a restricted growth function. It starts with 1 and the �rst occurrence

of each integer is exactly one greater than the maximum of all previous integers.

1; 1; 1; 3; 3 is not an RG function. The �rst occurrence of 3 is two greater than the max

of all previous integers.

1; 2; 3; 1 is an RG function.

(b) We list the blocks f�1(i) in order of i. Observe that all partitions of 4 occur exactly

once as coimages of the RG functions.

1111! f1; 2; 3; 4g 1112! f1; 2; 3g; f4g 1121! f1; 2; 4g; f3g
1122! f1; 2g; f3; 4g 1123! f1; 2g; f3g; f4g 1211! f1; 3; 4g; f2g
1212! f1; 3g; f2; 4g 1213! f1; 3g; f2g; f4g 1221! f1; 4g; f2; 3g
1222! f1g; f2; 3; 4g 1223! f1g; f2; 3g; f4g 1231! f1; 4g; f2g; f3g
1232! f1g; f2; 4g; f3g 1233! f1g; f2g; f3; 4g 1234! f1g; f2g; f3g; f4g

(c) 11111, 11112, 11121, 11122, 11123 ! ff1; 2; 3g; f4g; f5gg
11211, 11212, 11213, 11221, 11222 ! ff1; 2g; f3; 4; 5gg
11223, 11231, 11232, 11233, 11234 ! ff1; 2g; f3g; f4g; f5gg

Fn-4.1 hX;Y 0 1 2 3 4 fX
0 1=16 0 0 0 0 1=16

1 0 4=16 0 0 0 4=16

2 0 3=16 3=16 0 0 6=16

3 0 0 2=16 2=16 0 4=16

4 0 0 0 0 1=16 1=16

fY 1=16 7=16 5=16 2=16 1=16

The row index is X and

the column index is Y .

E(X) = 2, Var(X) = �X = 1 E(Y ) == 1:69, Var(Y ) = 0:96, �Y = 0:98

(c) Cov(X;Y ) = 0:87

(d) �(X;Y ) = 0:87=(1)(0:98) = +0:89 Since the correlation is close to 1, X and Y move

up and down together. In fact, you can see from the table for the joint distribution

that X and Y are often equal.

Fn-4.2 (a) You should be able to supply reasons for each of the following steps

Cov(aX + bY; aX � bY ) = E[(aX + bY )(aX � bY )]�E[(aX + bY )]E[(aX � bY )]

= E[a2X2 � b2Y 2]� [aE(X)� bE(Y )][aE(X) + bE(Y )]

= E[a2X2 � b2Y 2]� [a2E2(X)� b2E2(Y )]

= a2[E(X2)�E2(X)]� b2[E(Y 2)�E2(Y )]

= a2Var(X)� b2Var(Y )
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Alternatively, using the bilinear and symmetric properties of Cov:

Cov(aX + bY; aX � bY ) = a2Cov(X;X)� abCov(X;Y ) + baCov(Y;X) + b2Cov(Y; Y )

= a2Var(X)� b2Var(Y )

(b) Here is the calculation:

Var[(aX + bY )(aX � bY )] = Var[a2X2 � b2Y 2)]

= a4Var(X2)� 2a2b2Cov(X2; Y 2) + b4Var(Y 2)

Fn-4.3 We begin our calculations with no assumptions about the distribution for X. Expand

the argument of the expectation and then use linearity of expectation to obtain.

E((aX + b)2) = E(a2X2 + 2abX + b2)) = a2E(X2) + 2abE(X) + b2 :

(The last term comes from the fact that E(b2) = b2 since b2 is a constant.) By

de�nition, Var(X) + (E(X))2 = E(X2). Thus

E((aX + b)2) = a2
�
Var(X) + (E(X))2

�
+ 2abE(X) + b2 :

With a little algebra this becomes,

E((aX + b)2) = a2Var(X) + (aE(X) + b)2 :

Specializing to the particular distributions for parts (a) and (b), we have the following.

(a) E((aX + b)2) = a2np(1� p) + (anp+ b)2.

(b) E((aX + b)2) = a2�+ (a�+ b)2.

Fn-4.4 We make the dubious assumption that the misprints are independent of one another.

(This would not be the case if the person preparing the book was more careless at

some times than at others.)

Focus your attention on page 8. Go one by one through the misprints m1,

m2, : : :, m200 asking the question, \Is misprint mi on page 8?"

By the assumptions of the problem, the probability that the answer is \yes" for

each mi is 1=100. Thus, we are dealing with the binomial distribution b(k; 200; 1=100).

The probability of there being less than four misprints on page 8 is

3X
k=0

b(k; 200; 1=100) =

3X
k=0

�
200

k

�
(1=100)k(99=100)200�k:

Using a calculator, we �nd the sum to be 0.858034.

Using the Poisson approximation, we set � = np = 2 and compute the easier sum

e�220=0! + e�221=1! + e�222=2! + e�223=3!;

which is 0.857123 according to our calculator.
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Fn-4.5 From the de�nition of Z and the independence of X and Y , Tchebyche�'s inequality

states that

P (jZ � aE(X)� bE(y)j � �) �
Var(X) + Var(Y )

�2
:

Applying this to the two parts (a) and (b), we get

(a) P (jZ � a � bÆj � �) leq
 + Æ

�2
.

(b) P (jZ � anr � bns � �) �
nr(1� r) + ns(1� s)

�2
.

Fn-4.6 We are dealing with b(k; 1000; 1=10). The mean is np = 100 and the variance is

npq = 90. The standard deviation is thus, 9.49. The exact solution is

115X
k=85

b(k; 1000; 1=10) =

115X
k=85

�
1000

k

�
(1=10)k(9=10)1000�k :

Using a computer with multi-precision arithmetic, the exact answer is 0.898. To apply

the normal distribution, we would compute the probability of the event [100; 115:5]

using the normal distribution with mean 100 and standard deviation 9.49. In terms of

the standard normal distribution, we compute the probability of the event [0; (115:5�
100)=9:49] = [0; 1:63]. This probability is 0.4484. We double this to get the approxi-

mate answer: 0.897.

Fn-4.7 We have

E(X) = E((1=n)(X1 + � � � +Xn)) = (1=n)E(X1 + � � � +Xn)

= (1=n)(E(X1) + � � � +E(Xn)) = (1=n)(�+ � � �+ �) = �

Var(X) = Var((1=n)(X + 1 + � � � +Xn)) = (1=n)2Var(X + 1 + � � �+Xn)

= (1=n)2(Var(X + 1) + � � � +Var(Xn)) = (1=n)2(n�2) = �2=n:

Since X has mean �, it is a reasonable approximation to �. Of course, it's important

to know something about the accuracy.

(c) Since Var(X)= �2=n, we have �X = �=
p
n. If we change from n to N , �X changes

to �=
p
N . Since we want to improve accuracy by a factor of 10, we want to have

�=
p
N = (1=10)(�=

p
n). After some algebra, this gives us N = 100n. In other words

we need to do 100 times as many measurements!
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