
Solutions for Basic Concepts in Graph Theory

GT-1.1 To specify a graph we must chooseE 2 P2(V ). LetN = jP2(V )j. (Note thatN =
�
n
2

�
.)

There are 2N subsets E of P2(V ) and
�
N
q

�
of them have cardinality q. This proves (a)

and answers (b).

GT-1.2 The sum is the number of ends of edges since, if x and y are the ends of an edge, the

edge contributes 1 to the value of d(x) and 1 to the value of d(y). Since each edge has

two ends, the sum is twice the number of edges.

Since
P

v d(v) is even if and only if the number of odd summands is even, it follows

that there are an even number of v for which d(v) is odd.

GT-1.3 (a) The graph is isomorphic to Q. The correspondence between vertices is given by

� =

�
A B C D E F G H

H A C E F D G B

�

where the top row corresponds to the vertices of Q.

(b) The graph Q0 is not ismorphic to Q. It can be made isomorphic by deleting one

edge and adding another. You should try to �gure out which edges these are.

GT-1.4 (a) (0; 2; 2; 3; 4; 4; 4; 5) is the degree sequence of Q. (b) If a pictorial representation

of R can be created by labeling P 0(Q) with the edges and vertices of R, then R has

degree sequence (0; 2; 2; 3; 4; 4; 4; 5) because the degree sequence is determined by �.

(c) This is the converse of (b). It is false. The following graph has degree sequence

(0; 2; 2; 3; 4; 4; 4; 5) but cannot be morphed into the form P 0(Q).

GT-1.5 (a) There is no graph Q with degree sequence (1; 1; 2; 3; 3; 5) since the sum of the

degrees is odd. The sum of the degrees of a graph is 2jEj and must, therefore, be even.

(d) (answers (b) and (c) as well) There is a graph with degree sequence (1; 2; 2; 3; 3; 5),

no loops or parallel edges allowed. Take

� =

0
@ a b c d e f g h

A B C A B C E F

B C E D D D D D

1
A :

(e) (answers (f) as well) A graph with degree sequence (3; 3; 3; 3) has (3+3+3+3)=2 = 6

edges and, of course 4 vertices. That is the maximum
�
4

2

�
of edges that a simple graph

with 4 vertices can have. It is easy to construct such a graph. Draw the four vertices

and make all possible connections. This graph is called the complete graph on 4

vertices.
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(g) There is no simple graph (or graph without loops or parallel edges) with degree

sequence (3; 3; 3; 5). See (f).

(h) Similar arguments to (f) apply to the complete graph with degree sequence

(4; 4; 4; 4; 4). Such a graph would have 20=2 = 10 edges. But
�
5

2

�
= 10. To con-

struct such a graph, use 5 vertices and make all possible connections.

(i) There is no such graph. See (h).

GT-1.6 Each of (a) and (c) has just one pair of parallel edges (edges with the same endpoints),

while (b) and (d) each have two pairs of parallel edges. Thus neither (b) nor (d) is

equivalent to (a) or (c). Vertex 1 of (b) has degree 4, but (d) has no vertices of degree

4. Thus (b) and (d) are not equivalent. It turns out that (a) and (c) are equivalent.

Can you see how to make the forms correspond?

GT-1.7 (a) We know that the expected number of triangles behaves like (np)3=6. This equals

1 when p = 61=3=n.

(b) By Example 5, the expected number of edges is
�
n
2

�
p, which behaves like (n2=2)p for

large n. Thus we expect about (61=3=2)n

GT-1.8 Introduce random variablesXS, one for each S 2 Pk(V ). Reasoning as in the example,
E(XS) = pK where K =

�
k
2

�
, the number of edges that must be present. Thus the

expected number of sets of k vertices with all edges present is
�
n
k

�
pK .

For large n, this behaves like nkpK=k!, which will be 1 when p = (k!=nk)1=K . For

large n, the exected number of edges behaves like (n2=2)(k!=nk)1=K . This last number

has the form Cn� where C = (k!)1=K=2 and � = 2� k=K = 2� 2=(k� 1) =
2(k�2)
k�1

.

GT-1.9 The �rst part comes from factoring out
�
n
3

�
p3 from the last equation in Example 6. To

obtain the inequality, replace (1�p3) with (1�p2), factor it out, and use 1+3(n�3) <

3n.

GT-2.1 Since E � P2(V ), we have a simple graph. Regardless of whether you are in set C

or S, following an edge takes you into the other set. Thus, following a path with an

odd number of edges takes you to the opposite set from where you started while a

path with an even number of edges takes you back to your starting set. Since a cycle

returns to its starting vertex, it obviously returns to its starting set.

GT-2.2 (a) The graph is not Eulerian. The longest trail has 5 edges, the longest circuit has 4

edges.

(b) The longest trail has 9 edges, the longest circuit has 8 edges.

(c) The longest trail has 13 edges (an Eulerian trail starting at C and ending at D).

The longest circuit has 12 edges (remove edge f).

(d) This graph has an Eulerian circuit (12 edges).

GT-2.3 (a) The graph is Hamiltonian.

(b) The graph is Hamiltonian.

(c) The graph is not Hamiltonian. There is a cycle that includes all vertices except K.

(d) The graph is Hamiltonian.

GT-2.4 (a) There are jV � V j potential edges to choose from. Since there are two choices for

each edge (either in the digraph or not), we get 2n
2

simple digraphs.
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(b) With loops forbidden, our possible edges include all elements of V � V except

those of the form (v; v) with v 2 V . Thus there are 2n(n�1) loopless simple digraphs.

An alternative derivation is to note that a simple graph has
�
n
2

�
edges and we have

4 possible choices in constructing a digraph: (i) omit the edge, (ii) include the edge

directed one way, (iii) include the edge directed the other way, and (iv) include two

edges, one directed each way. This gives 4(
n

2) = 2n(n�1). The latter approach is not

useful in doing part (c).

(c) Given the set S of possible edges, we want to choose q of them. This can be done

in
�
jSj
q

�
ways. In the general case, the number is

�
n2

q

�
and in the loopless case it is�

n(n�1)
q

�
.

GT-2.5 (a) Let V = fu; vg and E = f(u; v); (v; u)g.

(b) For each fu; vg 2 P2(V ) we have three choices: (i) select the edge (u; v), (ii) select

the edge (v; u) or (iii) have no edge between u and v. Let N = jP2(V )j =
�
n
2

�
. There

are 3N oriented simple graphs.

(c) We can choose q elements of P2(V ) and then orient each of them in one of two

ways. This gives us
�
N
q

�
2q.

GT-2.6 (a) For all x 2 S, xjx. For all x; y 2 S, if xjy and x 6= y, then y does not divide x. For

all x; y; z 2 S, xjy, yjz implies that xjz.

(b) The covering relation is

H = f(2; 4); (2; 6); (2; 10); (2; 14); (3; 6); (3; 9); (3; 15);

(4; 8); (4; 12); (5; 10); (5; 15); (6; 12); (7; 14)g:

We leave it to you to draw the picture!

GT-3.1 (a) Suppose G is a connected graph with v vertices and v edges. A connected graph is

a tree if and only if the number of vertices is one more than the number of edges. Thus

G is not a tree and must have at least one cycle. This proves the base case, n = 0.

Suppose n > 0 and G is a graph with v vertices and v + n edges. We know that the

graph is not a tree and thus has a cycle. We know that removing an edge from a cycle

does not disconnect the graph. However, removing the edge destroys any cycles that

contain it. Hence the new graph G0 contains one less edge and at least one less cycle

than G. By the induction hypothesis, G0 has at least n cycles. Thus G has at least

n+ 1 cycles.

(b) Let G be a graph with components G1; : : : ; Gk. With subscripts denoting compo-

nents, Gi has vi vertices, ei = vi + ni edges and at least ni + 1 cycles. From the last

two formulas, Gi has at least 1 + ei � vi cycles. Now sum over i.

(c) For each n we wish to construct a simple graph that has n more edges than vertices

but has only n + 1 cycles. There are many possibilities. Here's one solution. The

vertices are v and, for 0 � i � n, xi and yi. The edges are fv; xig, fv; yig, and fxi; yig.

(This gives n+1 triangles joined at v.) There are 1+2(n+1) vertices, 3(n+1) edges,

and n+ 1 cycles.

GT-3.2 (a)
P

v2V d(v) = 2jEj. For a tree, jEj = jV j � 1. Since 2jV j =
P

v2V 2,

2 = 2jV j � 2jEj =
X
v2V

(2� d(v)):
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(b) Suppose that T is more than just a single vertex. Since T is connected, d(v) 6= 0

for all v. Let nk be the number of vertices of T of degree k. By the previous result,P
k�1(2� k)nk = 2. Rearranging gives n1 = 2 +

P
k�2(k � 2)nk. If nm � 1, the sum

is at least m� 2.

(c) Let the vertices be u and vi for 1 � i � m. Let the edges be fu; vig for 1 � i � m.

GT-3.3 (a) No such tree exists. A tree with six vertices must have �ve edges.

(b) No such tree exists. Such a tree must have at least one vertex of degree three or

more and hence at least three vertices of degree one.

(c) A graph with two connected components, each a tree, each with �ve vertices will

have this property.

(d) No such graph exists.

(e) No such tree exists.

(f) Such a graph must have at least c+ e� v = 1 + 6� 4 = 3 cycles.

(g) No such graph exists. If the graph has no cycles, then each component is a tree.

In such a graph, the number of vertices is strictly greater than the number of edges

for each component and hence for the whole graph.

GT-3.4 (a) The idea is that for a rooted planar tree of height h, having at most 2 children

for each non-leaf, the tree with the most leaves occurs when each non-leaf vertex has

exactly 2 children. You should sketch some cases and make sure you understand this

point. For this case l = 2h and so log2(l) = h. Any other rooted planar tree of height

h, having most 2 children for each non-leaf, is a subtree (with the same root) of this

maximal-leaf binary tree and thus has fewer leaves.

(b) Knowing the number of leaves does not bound the height of a tree | it can be

arbitrarily large.

(c) The maximum height is h = l� 1. One leaf has height 1, one height 2, etc., one of

height l � 2 and, �nally, two of height l � 1.

(d) (answers (e) as well) dlog2(l)e is a lower bound for the height of any binary tree

with l leaves. It is easy to see that you can construct a full binary tree with l leaves

and height dlog2(l)e.

GT-3.5 (a) A binary tree with 35 leaves and height 100 is possible.

(b) A full binary tree with 21 leaves can have height at most 20. So such a tree of

height 21 is impossible.

(c) A binary tree of height 5 can have at most 32 leaves. So one with 33 leaves is

impossible.

(d) No way! The total number of vertices is

5X
i=0

35 =
36 � 1

2
= 364 :

GT-3.6 (a) For (1) there are four spanning trees. For (2) there are 8 spanning trees. Note

that there are
�
5

3

�
= 10 ways to choose three edges. Eight of these 10 choices result in
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spanning trees, the other two choices result in cycles (with vertex sequences (A;B;D)

and (B;C;D)). For (3) there are 16 spanning trees.

(b) For (1) there is one. For (2) there are two. For (3) there are two.

(c) For (1) there are two. For (2) there are four. For (3) there are six.

(d) For (1) there are two. For (2) there are three. For (3) there are six.

GT-3.7 (a) For (1) there are three minimal spanning trees. For (2) there are two minimal

spanning trees. For (3) there is one minimal spanning tree.

(b) For (1) there is one minimal spanning tree up to isomorphism. For (2) there are
two. For (3) there is one.

(c) For (1) there is one. For (2) there is one. For (3) there are four.

(d) For (1) there are two. For (2) there is one. For (3) there are four.

GT-3.8 (a) (and (b)) There are 21 vertices, so the minimal spanning tree has 20 edges. Its

weight is 30. We omit details.

( c) Note that K is a the only vertex in common to the two bicomponents of this graph.

Whenever this happens (two bicomponents, common vertex), the depth-�rst spanning

tree rooted at that common vertex has exactly two \principal subtrees" at the root.

In other words, the root of the depth-�rst spanning tree has down-degree two (two

children). The two children of K can be taken to be P and L. P is the root of a

subtree consisting of 5 vertices, 4 with one child, one leaf. L is the root of a subtree

consisting of 15 vertices, 14 with one child, one leaf.

GT-4.1 (a) The algorithm that has running time 100n is better than the one with running

time n2 for n > 100. 100n is better than (2n=10 � 1)100 for n � 60. For 1 � n < 10,

(2n=10 � 1)100 is worse than n2. At n = 10 they are the same. For 10 < n < 43, n2 is

worse than (2n=10 � 1)100. For n � 43, (2n=10 � 1)100 is worse than n2. Here are the

graphs:

(b) When n is very large, B is fastest and C is slowest. This is because, of two

polynomials the one with the lower degree is eventually faster and an exponential

function grows faster than any polynomial.
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GT-4.2 (a) The most direct way to prove this is is to use Example 21. additional observations

on � and O.

lim
n!1

g(n)

f(n)
= C > 0 implies g(n) is �(f(n))

Let p(n) =
Pk

i=0 bin
i with bk > 0. Take f(n) = p(n), g(n) = nk and C = bk > 0.

Thus, p(n) is �(nk), hence the equivalence class of each is the same set: �(p(n)) is

�(nk).

(b) O(p(n)) is O(nk) follows from (a).

(c) lim
n!1

p(n)=an = 0. This requires some calculus. By applying l'Hospital's Rule k

times, we see that the limit is lim
n!1

(k!=(log(a))k)=an, which is 0. Any algorithm with

exponential running time is eventually much slower than a polynomial time algorithm.

(d) For p(n) to be �(aCn
k

), we must have positive constants A and B such that

A � ap(n)=aCn
k

� B. Taking logarithms gives us logaA � p(n)� Cnk � logaB. The

center of this expression is a polynomial which is not constant unless p(n) = Cnk +D

for some constant D, the case which is ruled out. Thus p(n)� Cnk is a nonconstant

polynomial and so is unbounded.

GT-4.3 Here is a general method of working this type of problem:

Let p(n) =
Pk

i=0 bin
i with bk > 0. Show using de�nition that �(p(n)) is �(nk).

Let s =
Pk�1

i=0 jbij and assume that n � 2s=bk. We have

jp(n)� bkn
kj �

����
k�1X
i=0

bin
i

���� �
k�1X
i=0

jbijn
i �

k�1X
i=0

jbijn
k�1 = snk�1 � bkn

k=2:

Thus jp(n)j � bkn
k�bkn

k=2 � (bk=2)n
k and also jp(n)j � bkn

k+bkn
k=2 � (3bk=2)n

k.

The de�nition is satis�ed with N = 2s=bk, A = (bk=2) and B = (3bk=2). If you

want to show, using the de�nition, that �(p(n)) is �(Knk) for some K > 0, replace

A with A0 = A=K and B with B0 = B=K.

In our particular cases we can be sloppy and it gets easier. Take (a) as an example.

(a) For g(n) = n3 + 5n2 + 10, choose N such that n3 > 5n2 + 10 for n > N . You can

be ridiculous in the choice of N . N3 > 5N2 + 10 is valid if 1 > 5=N + 10=N3. N = 10

is plenty big enough. If n3 > 5n2 + 10 then n3 < g(n) < 2n3. So taking A = 1 and

B = 2 works for the de�nition: An3 < g(n) < Bn3 showing g is �(n3). If you want to

use f(n) = 20n3 as the problem calls for, replace these constants by A0 = A=20 and

B0 = B=20. Thus, A0(20n3) < g(n) < B0(20n3) for n > N .

This problem should make you appreciate the much easier approach of Example 21.

GT-4.4 (a) There is an explicit formula for the sum of the squares of integers.

nX
i=1

i2 =
n(n+ 1)(2n+ 1)

6
:

This is a polynomial of degree 3, hence the sum is �(n3).
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(b) There is an explicit formula for the sum of the cubes of integers.

nX
i=1

i3 =
�n(n+ 1))

2

�2
:

This is a polynomial of degree 4, hence the sum is �(n4).

(c) To show the
Pn

i=1 i
1=2 is �(n3=2) it helps to know a little calculus. You can

interpret the integral as upper and lower Riemann sum approximations to the integral

of f(x) = x1=2 with �x = 1:

Z n

0

f(x) dx <

nX
i=1

i1=2 =

n�1X
i=1

i1=2 + n1=2 <

Z n

1

f(x) dx+ n1=2:

Since
R
x1=2 dx = 2x3=2=3 + C. You can �ll in the details to get �(n3=2).

The method used in (c) will also work for (a) and (b). The idea works in general:

Suppose f(x) � 0 and f 0(x) > 0. Let F (x) be the antiderivative of f(x). If f(n) is

O(F (n)), then
Pn

i=0 f(n) is �(F (n)). There is a similar result if f 0(x) < 0: replace

\f(n) is O(F (n))" with \f(1) is O(F (n))."

GT-4.5 (a) To show
Pn

i=1 i
�1 is �(logb(n)) for any base b > 1 use the Riemann sum trick

from the previous exercise.
R n
1
x�1 dx = ln(x). This shows that

Pn
i=1 i

�1 is �(loge(n)).

But, loge(x) = loge(b) logb(x) (as we learned in high school). Thus, loge(x) and logb(x)

belong to the same � equivalence class as they di�er by a postive constant multiple

loge(b) (recall b > 1).

(b) First you need to note that logb(n!) =
Pn

i=1 logb(i). Use the Riemann sum trick

again.

Z n

1

logb(x) dx = logb(e)

Z n

1

loge(x) dx = logb(e)
�
n ln(n)� n+ 1

�
:

Thus, the sum is �(n ln(n)� n+ 1) which is �(n ln(n)) which is �(n logb(n)).

(c) Use Stirling's approximation for n!, n! is asymptotic to (n=e)n(2�n)1=2. Thus,

n! is �((n=e)n(2�n)1=2), by Example 21. Do a little algebra to rearrange the latter

expression to get �((n=e)n+1=2).
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