The remarks are intended to enhance your understanding. You do not have to hand in your answers to them.

11-16 Use the given transformation to evaluate the integral.
12. $\iint_{R}(4 x+8 y) d A$, where R is the parallelogram with vertices $(-1,3),(1,-3),(3,-1$, and (1,5);
$x=\frac{1}{4}(u+v), y=\frac{1}{4}(v-3 u)$.
Remark: How does this improve the boundary of the region?
14. $\iint_{R}\left(x^{2}-x y+y^{2}\right) d A$, where R is the region bounded by the ellipse $x^{2}-x y+y^{2}=2$; $x=\sqrt{2} u-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v$
Remark: What does this do to the boundary and to the integrand? Do you think this would still be a good idea if the integrand were $x^{2}+y^{2}$?
16. $\iint_{R} y^{2} d A$, where R is the region bounded by the curves $x y=1, x y=2, x y^{2}=1$, $x y^{2}=2$;
$u=x y, v=x y^{2}$. Illustrate the region R. (You may use a calculator.)
S1. Evaluate the improper integral $\iint x^{2} e^{-\left(x^{2}+y^{2}\right)} d A$ over the entire $x y$-plane.
S2. A sphere of radius R is bounded by the surface $x^{2}+y^{2}+z^{2}=R^{2}$. By transforming $\iiint_{R} d V$ to spherical coordinates, evaluate the volume of the sphere.
17. (a) Evaluate $\iiint_{E} d V$, where E is the solid enclosed by the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$.
Use the transformation $x=a u, y=b u, z=c u$.
(b) The Earth is not a perfect sphere; rotation has resulted in a flattening at the poles. So the shape can be approximated by an ellipsoid with $a=b=6378 \mathrm{~km}$ and $c=6356 \mathrm{~km}$. Use part (a) to estimate the volume of the Earth.
18. Evaluate $\iiint_{E} x^{2} y d V$, where E is the solid of Exercise 17(a).

