A vector (or scalar) function $\mathbf{F}(\mathbf{R})$ is called *homogeneous of degree* d if $\mathbf{F}(t\mathbf{R}) = t^d \mathbf{F}(\mathbf{R})$ for all vectors \mathbf{R} and real numbers t such that \mathbf{R} and $t\mathbf{R}$ are in the domain of \mathbf{F} . (If d = 0, we define $0^d = 1$.)

- **S1.** Suppose $\mathbf{F}(\mathbf{R})$ is defined in a domain that is star shaped with respect to the origin and is homogenous of degree d. Using the integral formulas from Sections 4.4 and 4.5 with $\mathbf{R}_0 = \mathbf{0}$, prove the following:
 - (a) If **F** has a scalar potential, then $\frac{1}{d+1}\mathbf{F}(\mathbf{R}) \cdot \mathbf{R}$ is a scalar potential for **F** and it is homogeneous of degree d + 1.
 - (b) If **F** has a vector potential, then $\frac{1}{d+2}\mathbf{F}(\mathbf{R}) \times \mathbf{R}$ is a vector potential for **F** and it is homogeneous of degree d + 1.

Remark: Since the star-shaped domain contains the origin, we may take t = 0 and **R** any point in the domain to get $\mathbf{F}(0\mathbf{R}) = 0^d \mathbf{F}(\mathbf{R})$. It follows that $d \ge 0$.

- **S2.** Show that the vector functions **F** of Examples 4.9, 4.10 and 4.12 and the vector function in Exercise 4.5.2 are all homogeneous and compute their degrees.
- **S3.** Using Exercises S1 and S2, derive vector (and, for Example 4.12, scalar) potentials for Examples 4.9, 4.10 and 4.12 and Exercise 4.5.2.
- S4. For Example 4.12 and Exercise 4.5.2 the vector potentials **G** obtained in the previous exercise do not agree with the result in the book. For instance, for Example 4.12 you should obtain $\frac{1}{3}(-yz\mathbf{i} xz\mathbf{j} + 2xy\mathbf{k})$. Explain why both answers are correct.