
CHAPTER 11

*Generating Function
Topics

Introduction

The four sections in this chapter deal with four distinct topics: systems of recursions, exponential

generating functions, Pólya’s Theorem and asymptotics estimates. These sections can be read inde-

pendently of one another. The section on “asymptotic” estimates refers to formulas in earlier sections

of the chapter, but there is no need to read the section containing the formula.

“Systems of recursions,” as you might guess, deals with the creation and solution of sets of

simultaneous recursions. These can arise in a variety of ways. One source of them is algorithms that

involve interrelated recursive subroutines. Another source is situations that can be associated with

grammars. General context free grammars can lead to complicated recursions, but regular grammars

(which are equivalent to finite state automata) lead to simple systems of recursions. We limit our

attention to these simple systems.

Exponential generating functions are very much like ordinary generating functions. They are

used in situations where things are labeled rather than unlabeled. For example, they are used to

study partitions of a set because each of the elements in the set is different and hence can be thought

of as a labeled object. We will briefly study the Rules of Sum and Product for them as well as a

useful consequence of the latter—the Exponential Formula.

Burnside’s Lemma (Theorem 4.5 (p. 112)) is easily seen to apply to the situation in which the

objects being counted have “weights”. As a result, we can introduce generating functions into the

study of objects with symmetries. This “weighted Burnside lemma” has a variety of important

special cases. We will study the simplest, and probably most important one—Pólya’s theorem.

Suppose we are studying some sequence of numbers an and want to know how the sequence

behaves when n is large. Usually it grows rapidly, but we want to know more than that—we want a

relatively simple formula that provides some sort of estimate for an. Stirling’s formula (Theorem 1.5

(p. 12)) is an example of such a formula. This subject is referred to as asymptotics or asymptotic

analysis. Because the proofs of results in this area require either messy estimates, a knowledge of

complex variables or both, we will not actually prove the estimates that we derive.
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308 Chapter 11 Generating Function Topics

11.1 Systems of Recursions

So far we’ve dealt with only one recursion at a time. Now we look at ways in which systems of
recursions arise and adapt our methods for a single recursion to solving simple systems of recursions.
The adaptation is straightforward—allow there to be more than one recursion. As usual, examples
are the best way to see what this is all about.

Example 11.1 Counting Batcher sort comparators Let’s study the Batcher sort. As with
our study of merge sorting in Example 10.4 (p. 278), we’ll limit the number of things being sorted to
a power of 2 for simplicity. We want to determine bk, the number of comparators in a Batcher sort
for 2k things. We’ll rewrite the Batcher sorting algorithm in Section 8.3.2 to focus on the number
of things being sorted and number of comparators. The comments indicate the contributions to the
recursion.

BSORT(2k things) /* uses bk comparators */

If k = 0, Return /* b0 = 0 */

BSORT(2k−1 things) /* bk = bk−1 */

BSORT(2k−1 things) /* +bk−1 */

BMERGE(2k things) /* +mk */

Return

End

BMERGE(2k things) /* uses mk comparators */

If k = 0, Return /* m0 = 0 */

End if

If k = 1,

one Comparator and Return /* m1 = 1 */

BMERGE2(2k things) /* mk = tk */

2k−1 − 1 Comparators /* +2k−1 − 1 */

Return

End

BMERGE2(2k things) /* uses tk comparators */

BMERGE(2k−1 things) /* tk = mk−1 */

BMERGE(2k−1 things) /* +mk−1 */

Return

End

Note that since BMERGE2(2k things) is never called for k < 2, we can define t0 and t1 arbitrarily.

How should we choose the values of t0 and t1? In the end, it doesn’t really matter because the
answers will be unaffected by our choices. On the other hand, how we choose these values can affect
the amount of work we have to do. There are two rules of thumb that can help in making such
choices:

• Choose the initial values so as to minimize the number of special cases of the recursion. (For
example, the recursion below has two special cases for mk.)

• Choose simple values like zero.

We’ll set t0 = 0 and t1 = 2m0 = 0.
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Copying the recursions from the comments in the code we have

bk =

{

0 if k = 0,
2bk−1 + mk if k > 0;

mk =

{

0 if k = 0,
1 if k = 1,
tk + 2k−1 − 1 if k > 1;

tk =

{

0 if k = 0,
2mk−1 if k > 0.

11.1

We now apply our six steps for solving recursions (p. 277), allowing more than one recursion and
more than one resulting equation. Let B(x), M(x) and T (x) be the generating functions. The result
of applying the first four steps to (11.1) is

B(x) = 2xB(x) + M(x),

M(x) = x +
∑

k≥2

tkxk +
∑

k≥2

(2k−1 − 1)xk

= x +
∑

k≥0

tkxk +
∑

k≥1

(2k−1 − 1)xk

= x + T (x) +
x

1 − 2x
− x

1 − x
,

T (x) = 2xM(x).

We now carry out Step 5 by solving these three linear equations in the three unknowns B(x), M(x)
and T (x). From the first equation, we have

B(x) =
M(x)

1 − 2x
. 11.2

Combining the equations for M(x) and T (x), we have

M(x) = x + 2xM(x) +
x

1 − 2x
− x

1 − x
.

Solving this for M(x) and substituting the result (11.2), we obtain

B(x) =
x

(1 − 2x)2
+

x

(1 − 2x)3
− x

(1 − x)(1 − 2x)2
.

Our formula for B(x) can be expanded using partial fractions. We won’t carry out the calcula-
tions here except for noting that we can rewrite this as

B(x) =
x

(1 − 2x)3
− x

(1 − 2x)2
+

2x

1 − 2x
− 2x

1 − x
.

The result is

bk = 2k−2(k2 − k + 4) − 1. 11.3

How does this result compare with the upper bound on the number of comparisons in merge sort
that we found in Example 10.4? There we obtained an upper bound of n log2 n and here we obtained

an actual value that is close to 1
2n(log2 n)2. Thus Batcher sort is a poor software sorting algorithm.

On the other hand, it is a much better network sorting algorithm than the only other one we studied,
the brick wall.

In the next example we will work with a set of linked recursions in the context of a directed
graph or, equivalently, a finite state automaton.
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Figure 11.1 Three ways to place nonoverlapping dominoes on 2 by 5 boards. A domino is indicated by
a white rectangle and the board is black.

Example 11.2 Rectangular arrays, digraphs and finite automata Imagine a k by n
array of squares. We would like to place dominoes on the array so that each domino covers exactly
two squares and the dominoes do not overlap. Not all squares need be covered. Thus there may be
any number of dominoes from none to nk/2. Let an(k) be the number of ways to do this. Figure
11.1 shows some ways to place dominoes on a 2 by 5 board.

We can work out a recursion for an(1) quite easily. Let’s do it. When n > 1, the number of
arrangements with the last square empty is an−1(1) and the number of arrangements with a domino
in the last square is an−2(1). This is the same as the recursion for the Fibonacci numbers, but the
initial conditions are a bit different. (What are they?) After some calculation, you should be able to
get an(1) = Fn−1.

There is a quicker way to get an(1). If we replace each empty square with a “0” and each domino
with “10”, we obtain an n-long string of zeroes and ones ending in zero and having no adjacent ones.
Conversely any such string of zeroes and ones gives rise to a placement of dominoes. By stripping
off the rightmost zero in the string, we have that an(1) = Fn−1.

For k > 1, an(k) is much more complicated. Try to write down a recursion for an(2)—or calculate
it in any other manner.

∗ ∗ ∗ Stop and think about this! ∗ ∗ ∗
We will show how to use a directed graph to produce our patterns of dominoes. The graph can
be regarded as a finite state machine or, more specifically, a nondeterministic finite automaton
(Section 6.6). We will show how to associate generating functions with such digraphs.

Our machine (digraph) has four states (vertices), which we call clear, first, second and both. We
imagine moving across the 2×n array, one column at a time from left to right, placing dominoes as we
reach a column. When we decide to place a domino in a horizontal position starting in column j of the
array, we are covering a square in column j +1 that we haven’t yet reached. We call this covering of
an unreached square a “commitment.” At the next step we must take into account any commitment
that was made in the previous step. Our states keep track of the unsatisfied commitments; that is,
if we are filling the jth column, the commitments made at column j − 1:

(a) clear means there are no commitments to take into account;

(b) first means we made a commitment by placing a domino in the first row of column j − 1
which runs over into column j;

(c) second means we made a commitment by placing a domino in the second row;

(d) both means we made commitments by placing dominoes in both rows.

Using the letters, c, f , s and b, the sequences of states for the columns in Figure 11.1 are fsfcc,
fcfsc and ccscc, respectively. The columns to which the commitments are made are 2 through 6. No
commitments are made to column 1 because no dominoes are placed before column 1. If we wanted
to reflect this fact in our sequences, we could add an entry of c for column 1 at the beginning of
each sequence. Note that all of these strings end with a c because no dominoes hang over the right
end of the board.

There is an edge in our digraph from state x to state y for each possible way to get from state
x at column j of the array to state y at column j + 1 of the array. For example, we can go from
clear to clear by placing no dominoes in column j or by placing one vertical domino in the column.
Thus there are two loops at clear. Since we cannot go from first to both, there are no edges from
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first to both. The following table summarizes the possibilities. An entry mx,y in position (x, y) is the
number of edges from state x to state y.

clear first second both

clear 2 1 1 1
first 1 0 1 0

second 1 1 0 0
both 1 0 0 0

To complete our picture, we need the initial and accepting states. From the discussion at the end
of the previous paragraph, you should be able to see that our initial state should be clear and that
there should be one accepting state, which is also clear.

Let cn be the number of ways to reach the state clear after taking n steps from the starting
state, clear. This means that no dominoes hang over into column n + 1. Note that cn is the number
of ways to place dominoes on a 2 × n board. Define fn, sn and bn in a similar way according to the
state reached after n steps from the starting state. Let C(x), etc., be the corresponding generating
functions.

We are only interested in cn (or C(x)), so why introduce all these other functions? The edges
that lead into a state give us a recursion for that state, for example, looking down the column labeled
clear, we see that

cn+1 = 2cn + fn + sn + bn 11.4

for n ≥ 0. Thus, when we study cn this way, we end up needing to look at the functions fn, sn and
bn, too.

In a similar manner to the derivation of (11.4),

fn+1 = cn + sn,

sn+1 = cn + fn,

bn+1 = cn,

11.5

for n ≥ 0. The initial conditions for the recursions (11.4) and (11.5) are the values at n = 0. Since
the initial state, clear, is the only state we can get to in zero steps,

c0 = 1 and f0 = s0 = b0 = 0.

To see how much work these recursions involve, use them to find c8, the number of ways to place
dominoes on a 2 by 8 board. Can we find an easier way to calculate cn; for example, one that does
not require the values of f , s and d as well? Yes.

We begin by converting the recursions into a set of linked generating functions using our method
for attempting to solve recursions. Multiplying both sides of the equations (11.4) and (11.5) by xn+1,
summing over n ≥ 0 and using the initial conditions, we obtain

C(x) = x(2C(x) + F (x) + S(x) + B(x)) + 1

F (x) = x(C(x) + S(x))

S(x) = x(C(x) + F (x))

B(x) = xC(x).

We have four linear equations in the four unknowns C(x), F (x), S(x) and B(x). Let’s solve
them for C(x). Subtracting the second and third equations, we get F (x) − S(x) = x(S(x) − F (x))
for all x and so S(x) = F (x). Thus F (x) = xC(x) + xF (x) and so F (x) = S(x) = xC(x)/(1 − x).
Substituting this and B(x) = xC(x) into the first equation gives us

C(x) = 2xC(x) +
2x2C(x)

1 − x
+ x2C(x) + 1.

With a bit of algebra, we easily obtain
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C(x) =
1 − x

1 − 3x − x2 + x3
. 11.6

A method of obtaining this by working directly with the table, thought of as a matrix

M =







2 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0






11.7

is given in Exercises 11.1.7.
We can use partial fractions to determine cn, but before doing so, we’d like to note that (11.6)

gives us an easier recursion for calculating cn: From (11.6) we have C(x) = 1−x+(3x+x2−x3)C(x).
Looking at the coefficient of xn on both sides, we have

c0 = 1, c1 = −1 + 3c0 = 2, c2 = 3c1 + c0 = 7

and
cn = 3cn−1 + cn−2 − cn−3 for n > 2. 11.8

Use this recursion to find c8 and compare the amount of work with that when you were using
(11.4) and (11.5). It’s also possible to derive (11.8) by manipulating (11.4) and (11.5) without using
generating functions. (Try doing it.)

To use partial fractions, we must factor the denominator of (11.6):

1 − 3x − x2 + x3 = (1 − px)(1 − qx)(1 − rx).

Unfortunately, the cubic does not factor with rational p, q or r. Using numerical methods we found
that p = 3.21432 . . ., q = .46081 . . . and r = −.67513 . . .. By partial fractions, cn = Ppn+Qqn +Rrn,
where P = .66459 . . ., Q = .07943 . . . and R = .25597 . . .. Thus an is the integer closest to Ppn.
Since we know p and P only approximately, we can’t get cn exactly for large n this way. Instead,
we’d use the recursion (11.8) to get exact values for cn. On the other hand, the recursion gives us
no idea about how fast cn grows, so we’d use our partial fraction result for this sort of information.
For example, the result says that, in some sense, the average number of choices per column is about
p since if there were exactly p choices per column, there would be pn ways to place dominoes in n
columns.

Example 11.3 Binary operations Let ∧ denote exponentiation; e.g., 3 ∧ 2 = 9. The interpre-
tation of 2 ∧ 3 ∧ 2 is ambiguous. We can remove the ambiguity by using parentheses:

(2 ∧ 3) ∧ 2 = 8 ∧ 2 = 64

2 ∧ (3 ∧ 2) = 2 ∧ 9 = 128.

Sometimes we get the same answer from different parenthesizations; e.g., 2 ∧ 2 ∧ 2 = 16, regardless
of parentheses.

Let’s consider the possible values of

0 ∧ 0 ∧ . . . ∧ 0. 11.9

Unfortunately, 0∧0 is not defined for the real numbers. For the purpose of this example, we’ll define
0 ∧ 0 = 1. The only other powers we need are well defined. In summary

0 ∧ 0 = 1, 0 ∧ 1 = 0, 1 ∧ 0 = 1 and 1 ∧ 1 = 1. 11.10

You should be able to show by induction on the length of the string that the only possible values
for (11.9) are 0 and 1, regardless of how the expression is parenthesized.

How many of the parenthesizations of (11.9) give the expression the value 0 and how many give
it the value 1?

If there are n zeroes present, let zn be the number of ways to obtain the value 0 and let wn be
the number of ways to obtain 1. We can write down the generating functions by using the Rules of
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Sum and Product: A zero is produced if n = 1 OR, by (11.10), if the left string is a zero AND the
right string is a one. By (11.10), the other three combinations give a one. Thus

Z(x) = x + Z(x)W (x)

W (x) = Z(x)Z(x) + W (x)Z(x) + W (x)W (x).
11.11

These equations are more complicated than our earlier ones because they are not linear. In general,
we cannot hope to solve such equations; however, these can be solved. Try to do so before you
continue.

∗ ∗ ∗ Stop and think about this! ∗ ∗ ∗

Let T (x) = W (x) + Z(x), the total number of parenthesizations without regard to value. Using
algebra on (11.11) or, more simply, using a direct combinatorial argument, you should be able to
show that

T (x) = x + T (x)T (x).

The solution to this equation is

T (x) =
1 −

√
1 − 4x

2
, 11.12

where the minus sign was chosen on the square root because T (0) = t0 = 0. We now rewrite
Z(x) = x + Z(x)W (x) as

Z(x) = x + Z(x)
(

T (x) − Z(x)
)

= x + T (x)Z(x) − Z(x)2. 11.13

Solving this quadratic for Z(x):

Z(x) =
T (x) − 1 +

√

(

1 − T (x)
)2

+ 4x

2
, 11.14

where the root with the plus sign was chosen because Z(0) = 0.

Of course, we can substitute (11.12) into (11.14) to obtain the explicit formula for Z(x). Unfor-
tunately, we are unable to extract a nice formula for zn from the result.

What can be done? At present, not much; however, in Example 11.31 (p. 351), we will obtain
estimates of zn for large n.

Note that T (x) = B(x), the generating function for unlabeled full binary RP-trees. We obtained
a differential equation for B in Example 10.8 (p. 284). This led to a simple recursion. There are general
techniques for obtaining such differential equations and hence recursions, but they are beyond the
scope of this text. We merely remark that it is possible to obtain a recursion for zn that requires
much less work than would be involved in simply using the recursion that is obtained by extracting
the coefficient of xn in (11.13).

Exercises

*11.1.1. Derive (11.8) directly from (11.4) and (11.5) without using generating functions.

11.1.2. Redo Exercise 10.2.4 (p. 280) using the directed graph method of Example 11.2. Which way was
easier?
Hint. Here’s one way to set it up. Introduce three vertices to indicate the present digit: zero, one and
two. You can introduce a bad vertex, too, or make certain digits impossible. Since you can end at
any digit, you’ll want to add generating functions together to get your answer.
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11.1.3. Let an be the number of ways to place dominoes on a 3 by n board with no blank spaces. Note that
an = 0 when n is odd. Let A(x) be the generating function.

(a) Prove that A(x) = (1 − x2)/(1 − 4x2 + x4).

(b) Show that an = 4an−2 − an−4 when n ≥ 4.

*(c) Prove the previous recursion without the use of generating functions.

11.1.4. How many n-long sequences of zeroes ones and twos are there with no adjacent entries equal?

11.1.5. Let L be a set of strings and let an be the number of strings in L of length n. Suppose that we
are given a nondeterministic finite automaton for recognizing precisely the strings in L. Describe a
method for using the automaton to get the generating function for the an’s.

11.1.6. Let an,j(2) be the number of ways to place exactly j dominoes on a 2 by n board. Extend the finite

machine approach of Example 11.2 so that you can calculate
∑

n,j an,j(2)x
nyj .

Hint. Put on the edges of the digraph information about the number of dominoes added to the board.
Use it to write down the equations relating the generating functions.

11.1.7. Given a finite machine as in Example 11.2, let mx,y be the number of edges from state x to y. This

defines a matrix M of (11.7).

(a) Show that m
(n)
x,y, the (x, y) entry in Mn, is the number of ways to get from x to y in exactly n

steps.

(b) Let a be a row vector with ak = 1 if k is an accepting state and ak = 0 otherwise. Define i

similarly for the initial state. Show that iMnat is the number of ways to get from the initial

state to an accepting state in exactly n steps. (We use at for the column vector which is the
transpose of the row vector a.)

(c) Conclude that the generating functions in Example 11.2 and in Exercise 11.1.5 have the form

i(I − xM)−1at, where I is the identity matrix.

(d) Extend the definition of M to include the previous exercise.

11.1.8. Let an be the number of ways to distribute unlabeled balls into boxes numbered 1 through n such
that for each j with 1 ≤ j < n, the number of balls in boxes j and j + 1 together is at most 2.

(a) Construct a directed graph that can be used to calculate the generating function for an.
Hint. Let the vertices (states) be the number of balls in a box.

(b) Obtain a set of linked equations for the various generating functions.

(c) Show that
∑

anxn = (1 + x − x2)/(1 − 2x − x2 + x3).

(d) Restate the solution in matrix terms using the previous exercise.

(e) Find the roots of r3 − 2r2 − r + 1 = 0 numerically and use partial fractions to determine the
value of an.

(f) Let bn,k be the number of ways to distribute k balls into n boxes subject to our adjacency

condition. Using the idea in Exercise 11.1.6, determine the generating function for bn,k.
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11.1.9. How one approaches a problem can be very important. Obviously, the wrong attack on a problem
may result in no solution. Less obvious is the fact that one approach may involve much less work
than another. Everyone sometimes fails to find the easiest approach. You can probably find examples
of this in the way you’ve solved some homework problems. Here’s another brief example. How many
n long sequences of zeroes and ones contain the pattern p = 010101011?

(a) One approach is to use two of the tools we’ve developed: designing finite automata for accepting
sequences with certain patterns and obtaining generating functions from automata. This would
require an automaton with at least ten states. Draw such an automaton for p and write down
the family of associated equations.

(b) We’ll look at a simpler approach. Let an be the number of n long strings that do not contain
the desired pattern p. By considering what happens when something is added to the end of an
n − 1 long pattern, show that 2an−1 = an + cn for n > 0, where cn is the number of n long
strings s1, . . . , sn containing p but with p not contained in s1, . . . , sn−1. Also show that cn = 0
for n < 9, the length of p.

(c) Show that cn = an−9 and conclude that A(x) = (1 − x + x9)−1.
Hint. If your proof also works for 001001001, it is not quite correct.

(d) Generalize the previous result as much as you can.

(e) Show that the finite automata approach might sometimes be better by giving an automaton for
recognizing the strings that contain the pattern 001001001.

11.1.10. The situation we studied in Example 11.3 can be generalized in various ways. In this exercise you
will study some possibilities.

(a) Suppose we have a set A of symbols and a binary operation ◦ on A. This means that for all
s, t ∈ A the value of s ◦ t ∈ A is given. Consider the “product” b ◦ b ◦ . . . ◦ b. We want to know
how many ways each of the elements s ∈ A can arise by parenthesizing this product. Describe
carefully how to obtain the equations relating the generating functions from the “multiplication”
table for the operation ◦.

(b) We can change the previous situation by letting ◦ be a k-ary operation. For example, if it is a
ternary operation, there is no way to make sense of either the expression b ◦ b or the expression
b ◦ b ◦ b ◦ b. On the other hand, we have three parenthesizations for the 5-long case:

(b ◦ b ◦ b) ◦ b ◦ b, b ◦ (b ◦ b ◦ b) ◦ b and b ◦ b ◦ (b ◦ b ◦ b).

Again, describe how to construct equations relating the generating functions.

11.2 Exponential Generating Functions

When we use ordinary generating functions, the parts we are counting are “unlabeled.” It may
appear at first sight that this was not so in all the applications of ordinary generating functions.
For instance, we had sequences of zeroes and ones. Isn’t this labeling the positions in a sequence?
No, it’s dividing them into two classes. If they were labeled, we would require that each entry in the
sequence be different; that is, each label would be used just once. Well, then, what about placing balls
into labeled boxes? Yes the boxes are all different, but the parts we are counting in our generating
functions are the unlabeled balls, not the boxes. The boxes simply help to form the structure.

In this section, we’ll use exponential generating functions to count structures with labeled parts.
What we’ve said is rather vague and may have left you confused. We need to be more precise, so
we’ll look at a particular example and then explain the general framework that it fits into.

Recall the problem of counting unlabeled full binary RP-trees by number of leaves. We said that
any such tree could be thought of as either a single vertex OR an ordered pair of trees. Let’s look at
the construction of this ordered pair a bit more closely. If the final tree is to have n leaves, we first
choose some number k of leaves and construct a tree with that many leaves, then we construct a tree
with n − k leaves as the second member of the ordered pair. Thus there is a three step procedure:
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1. Determine the number of leaves for the first tree (and hence also the second), say k.

2. Construct the first tree so that it contains k leaves.

3. Construct the second tree so that it contains n − k leaves.

Now let’s look at what happens if the leaves are to be labeled; i.e., there is a bijection from the
n leaves to some set N of n labels. (Usually we have N = n, but this need not be so.) In this case,
we must replace our first step by a somewhat more complicated step and modify the other two steps
in an obvious manner:

1′. Determine a subset K of N which will become the labels of the leaves of the first tree.

2′. Construct the first tree so that its leaves use K for labels.

3′. Construct the second tree so that its leaves use N − K for labels.

Note that the number of ways to carry out Steps 2′ and 3′ depend only on |N | and |K|, not on the
actual elements of N and K. This is crucial for the use of exponential generating functions. Because
of this, it is convenient to split Step 1′ into two steps:

1′a. Determine the number of leaves for the first tree (and hence also the second), say k.

1′b. Determine a subset K of N with |K| = k to be the leaves of the first tree.

Let bn be the number of unlabeled full binary RP-trees with n leaves and let tn be the number
of such trees except that the leaves have been labeled using some set N with |N | = n. For n > 1,
our unlabeled construction gives us

∑

k bkbn−k, where the summation comes from the first step, the
bk from the second and the bn−k from the third. Similarly, for the labeled construction, we have

n
∑

k=0

(

n

k

)

tktn−k for n > 1, 11.15

where now the summation comes from Step 1′a and the binomial coefficient from Step 1′b.
The initial condition t1 = 1 (and, if we want, t0 = 0) together with (11.15) gives us a recursion

for tn. We’d like to use generating functions to solve this recursion as we did for the unlabeled case.
The crucial step for the unlabeled case was the observation that we were dealing with a convolution
which then led to (10.18). If this approach is to work in the labeled case, we need to be able to view
(11.15) as a convolution, too.

Recall that a convolution is something of the form
∑

k akcn−k. Unfortunately, (11.15) contains
(

n
k

)

which is not a function of k and is not a function of n − k, so it can’t be included in ak or in
cn−k. Fortunately, we can get around this by rewriting the binomial coefficient in terms of factorials:

tn =

n
∑

k=0

(

n

k

)

tktn−k = n!

n
∑

k=0

tk
k!

tn−k

(n − k)!
.

If we divide this equation by n!, we get a recursion for tn/n! in which the sum is a convolution. Thus,
the generating function B(x) =

∑

bnxn in the unlabeled case should be replaced by the generating
function T (x) =

∑

(tn/n!)xn in the labeled case. We can then proceed to solve the problem just as
we did in the unlabeled case.

You may have noticed that tn = bnn!, a result which can be proved directly. So why go through
all this? We did it to introduce an idea, not to solve a particular problem. So let’s formulate the
idea.

Definition 11.1 Exponential generating function The exponential generating func-

tion for the sequence c is
∑

n≥0

cn(xn/n!).

If T is some set of structures and w(T ) is the number of labels in T , then ET (x), the exponen-

tial generating function for T is
∑

T∈T xw(T )/(w(T ))!. We abbreviate “exponential generating
function” to EGF.
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Theorem 11.1 Rule of Sum Suppose a set T of structures can be partitioned into sets

T 1, . . . , T j so that each structure in T appears in exactly one T i. It then follows that

ET = ET 1
+ · · · + ET j

.

Theorem 11.2 Rule of Product Suppose each structure in a set T of structures can be

constructed from an ordered partition (K1, K2) of the labels and some pair (T1, T2) of structures

using the labels K1 in T1 and K2 in T2 such that:

(i) The number of ways to choose a Ti with labels Ki depends only on i and |Ki|.

(ii) Each structure T ∈ T arises in exactly one way in this process.

(We allow the possibility of Ki = ∅ if T i contains structures with no labels.) It then follows that

ET (x) = E1(x)E2(x),

where Ei(x) =
∑∞

n=0 ti,nxn/n! and ti,n is the number of ways to choose Ti with labels n.

Proof: You should be able to prove the Rule of Sum. The Rule of Product requires more work.

Let tn be the number of T ∈ T with w(T ) = n. By the assumptions,

tn =
∑

K1⊆n

t1,|K1| t2,n−|K1|

and so

tn
n!

=
1

n!

n
∑

k=0

(

n

k

)

t1,k t2,n−k =
n
∑

k=0

t1,k

k!

t2,n−k

(n − k)!
,

a convolution. Multiply by xn, sum over n and rearrange to obtain ET (x) = E1(x)E2(x).

If you compare these theorems with those given for ordinary generating functions in Section 10.4,

you may notice some differences.

• First, the Rule of Product was stated here for a sequence of only two choices. This is not

an essential difference—you can remove the constraint at the expense of a more cumbersome

statement of the theorem or you can simply iterate the theorem: divide things into two choices,

then subdivide the second choice in two and so on.

• The second difference seems more substantial: There is no parallel to condition (iii) of the

ordinary generating function version, Theorem 10.4 (p. 292). This is because it is implicitly built

into the statement of the theorem—the EGF counts by total number of labels, so it follows that

if T comes from T1 and T2, then w(T1) + w(T2) = w(T ).

• Finally, neither of the theorems here mentions either an infinite number of blocks in the partition

(Rule of Sum) or an infinite number of steps (Rule of Product). Again, this is not a problem—

infinitely many is allowed here, too.
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Example 11.4 Counting derangements Recall that a derangement is a permutation with no
fixed points and that Dn denotes the number of derangements on an n element set. It is convenient
to say that there is one permutation of the empty set and that it is a derangement because it does
not map anything to itself. By splitting off the fixed points from an arbitrary permutation, say n−k
of them, we have

n! =

n
∑

k=0

(

n

k

)

Dk. 11.16

We can manipulate this to obtain an EGF for Dn, but it is easier to go directly from the combinatorial
argument to the Rule of Product. We’ll do that now.

Let D(x) be the EGF for derangements by number of things deranged. A permutation of n
can be constructed by choosing some subset K of n, constructing a derangement of K and fixing
the elements of n − K. Every permutation of n arises exactly once this way. We make three simple
observations:

• The EGF for all permutations is

∞
∑

n=0

n!(xn/n!) =
1

1 − x
.

• Since there is just one permutation fixing all the elements of a given set, the EGF for permuta-
tions with all elements fixed is

∑

xn/n! = ex.

• By the Rule of Product, 1/(1 − x) = D(x)ex and so

D(x) =
e−x

1 − x
. 11.17

Note that we never needed to write down (11.16). In Example 10.7 (p. 283) and Exercise 10.3.1
(p. 291), (11.17) was used to obtain simple recursions for Dn.

The simplicity of this derivation and the ones in the examples that follow illustrate the power
of the Rule of Product.

Example 11.5 Sequences of letters How many n long sequences can be formed from A, B
and C so that the number of A’s in the sequence is odd and the number of B’s in the sequence is
odd? The labeled objects are simply the positions in the sequence. We form an ordered partition of
the labels n into three parts, say (PA, PB , PC). The letter A is placed in all the positions that are
contained in the set PA, and similarly for B and C. This is just the set up for the Rule of Product.
If |PA| is odd, we can place the A’s in just one way, while if |PA| is even, we cannot place them
because of the requirement that the sequence contain an odd number of A’s. Thus the EGF for the
A’s is

∑

k odd

xk/k! = (ex + e−x)/2.

This is also the EGF for the B’s. For the C’s we have
∑

xk/k! = ex. Thus the EGF for our sequences
is

(

ex + e−x

2

)2

ex =
e3x + 2ex + e−x

4
,

and so the answer is (3n + 2 + (−1)n)/4. You might like to try to find a direct counting argument
for this result.

This could also have been done with ordinary generating functions and multisection of series:
Keep track of the number of A’s, the number of B’s and the length of the sequence using three
variables in the generating function. Then use multisection twice to insure an odd number of A’s
and an odd number of B’s. Finally, set the variables that are keeping track of the A’s and B’s equal
to 1. We will not carry out the details.
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As noted in the last example, some problems can be done with both ordinary and exponential
generating functions. In such cases, it is usually clear that one method is easier than the other. In
some other problems, it is necessary to use generating functions that are simultaneously exponential
and ordinary. This happens because one class of objects we’re keeping track of has labels and the
other class does not. Here’s an example of this.

Example 11.6 Words from a collection of letters In Example 1.11 (p. 13) we considered
the problem of counting strings of letters of length k, where the letters can be repeated but the
number of repetitions is limited. Specifically, we used the letters in the word ERROR but insisted
no letter could be used more than it appeared. We suggest that you review Example 1.11 (p. 13)
and the improved methods in Examples 1.19 (p. 24) and 3.3 (p. 69), where we used the letters in
ERRONEOUSNESS. Imagine letters that are labeled, each by its position in the word. Since there
are three E’s and only one word of any length can be built with just E’s, the EGF for words of E’s
is 1 + x + x2/2 + x3/6. Choose E’s and R’s and O’s and N’s and U’s and S’s. In this the generating
function for words is

(

1 + x +
x2

2
+

x3

6

)2 (

1 + x +
x2

2

)3

(1 + x)

= 1 + 6x +
35x2

2
+

197x3

6
+

265x4

6
+ 45x5 +

322x6

9
+

811x7

36

+
541x8

48
+

40x9

9
+

389x10

288
+

29x11

96
+

13x12

288
+

x13

288
,

where the multiplication was done by a symbolic manipulation package. Multiplying the coefficient
of xn by n! gives the number of n-long words. Hence the number of 8-long words is 454,440.

Example 11.7 Set partitions We want to count the number of partitions of a set, keeping
track of the size of the set that is being partitioned and the number of blocks in the partition. Since
the elements of the set are distinct, they are labeled and so we will use an EGF to count them.
On the other hand, the blocks of a partition are not labeled, so it is natural to use an ordinary
generating function to count blocks.

Let’s start by looking at partitions with one block. There is just one such, so the EGF is
∑

n>0 xn/n! = ex − 1.

What about partitions with two blocks? We can use the Rule of Product. In fact, the statement
of the Rule of Product has built into it partitions of the set into two blocks K and L. Thus the
EGF should be (ex − 1)2. This is not quite right because these blocks are ordered but the blocks of
a partition of a set are supposed to be unordered. As a result, we must divide by 2!.

You should have no trouble showing that the number of partitions of a set that have exactly k
blocks has the EGF (ex − 1)k/k!.

Recall that S(n, k), the Stirling number of the second kind, is the number of partitions of an n
element set into exactly k blocks. By the previous paragraph,

∑

n

S(n, k)xn/n! =
(ex − 1)k

k!
. 11.18

Let S(0, 0) = 1. It follows that

∑

n,k

S(n, k)(xn/n!)yk =

∞
∑

k=1

(ex − 1)k

k!
yk + S(0, 0) = exp(y(ex − 1)).

(exp(z) is another notation for ez.) Call this A(x, y).

The formula for A(x, y) can be manipulated in various ways to obtain recursions, formulas and
other relations for S(n, k). Of particular interest is the total number of partitions of a set, which is
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given by Bn =
∑

k S(n, k). You should be able to see that we can obtain its generating function by

setting y = 1. Thus

∑

n

Bnxn/n! = A(x, 1) = exp(ex − 1)

= e−1 exp(ex) =
1

e

∞
∑

i=0

(ex)i

i!
=

1

e

∞
∑

i=0

eix

i!

=
1

e

∞
∑

i=0

1

i!

∞
∑

n=0

(ix)n

n!
=

∞
∑

n=0

(

1

e

∞
∑

i=0

in

i!

)

xn

n!
.

Thus we obtain

Theorem 11.3 Dobinski’s formula The number of partitions of n is

1

e

∞
∑

i=0

in

i!
.

Example 11.8 Mixed generating functions Suppose we are keeping track of both labels and

unlabeled things. For example, we might count set partitions keeping track of both the size of the

set and the number of blocks. We state without proof

Theorem 11.4 Mixed Generating Functions If we are keeping track of more that one

thing, some of which are labeled and some of which are unlabeled, then the Rules of Sum

and Product still apply. For the Rule of Product, the labels must satisfy the conditions in

Theorem 11.2 and the remaining weights must satisfy the conditions in Theorem 10.4 (p. 292).

Returning to the set partition situation, if y keeps track of the number of blocks, then (11.18)

becomes

yk
∑

n

S(n, k)xn/n! =
y(ex − 1)k

k!

and so the generating function is
∑

S(n, k)xnyk/n! = exp(y(ex − 1)).

The Exponential Formula

Before stating the Exponential Formula, we’ll look at a special case.
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Example 11.9 Connected graphs Let gn be the number of simple graphs with vertex set n
and let cn the number of such graphs which are connected. Recall that a simple graph is a graph
whose edge set is a subset of P2(V ). Since each pair of vertices is either an edge or not and there

are
(

n
2

)

pairs of vertices, it follows that gn = 2(n

2). (This is not 2
(

n
2

)

; the
(

n
2

)

is an exponent.) What
is the value of cn?

This problem can be approached in various ways. We’ll look at it in a way that can be generalized
considerably so that we’ll be able to obtain other results. The basic idea is to view a graph as being
built from connected components. We must either

• figure out how a graph decomposition into connected components translates into a generating
function or

• find some way to distinguish a component so we can split off one component and thus proceed
in a recursive fashion.

We’ll follow the latter approach. In order to distinguish a component, we will root the graph.

Let G(x) and C(x) be the EGFs for gn and cn. It will be convenient to take g0 = 1 and c0 = 0.

Imagine rooting the graph by choosing some vertex to be the root. There are n distinct ways
to do this and so there are ngn such graphs. Thus the generating function for the rooted graphs is
xG′(x).

We can construct a rooted graph by choosing a rooted component and then choosing the rest
of the graph. This is just the set up for the Rule of Product. Rooted components have the EGF
xC′(x). The rest of the rooted graph is simply a graph and so its generating function is G(x). (Note
that this works even when the rest of the rooted graph is empty because we have g0 = 1.) We have
proved that

xG′(x) =
(

xC′(x)
)

G(x). 11.19

Ignoring questions of convergence, as we usually do, we can easily solve this differential equation by
separation of variables to obtain

C(x) = ln
(

G(x)
)

+ A,

where the constant A needs to be determined. (Here’s how separation of variables works in this case.
We have xdG/dx = (xdC/dx)G and so dG/G = dC, which we integrate.)

Since C(0) = c0 = 0 and G(0) = g0 = 1, it follows that A = 0. Thus we have G(x) = exp(C(x)).
It would be nice if this formula led to a simple method for calculating C(x). This is not the case—in
fact, it is easier to equate coefficients of xn in (11.19) and rearrange it into a (rather messy) recursion
for cn.

The formula G = eC has been generalized considerably in the research literature. Here is one
form of it.

Theorem 11.5 Exponential Formula Suppose that we have two sets S and C of labeled
structures. A structure is rooted by distinguishing one its labels and calling it the root. Form
all possible rooted structures from those in S and call the set Sr. Do the same for C. If the Rule
of Product holds so that ESr

= ECr
ES , then

ES = exp
(

EC
)

.

(exp(z) is another notation for ez.) The proof is the same as that for G = eC .
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Example 11.10 Graphs revisited The previous example can be extended in two important
directions.

More parameters: We could include more variables in our generating functions to keep track of other
objects besides number of vertices. The basic requirement is that the number of such objects in
our rooted graph must equal the number in its rooted component plus the number in the rest of
the graph so that we still have the differential equation x∂G

∂x = (x∂C
∂x )G. (Of course, G and C now

contain other variables besides x and so the derivative with respect to x is a partial derivative.) You
should be able to easily see that we still have the solution G = exp(C), either from the differential
equation or from Theorem 11.5. Let’s look at a couple of examples.

• We can keep track of the number of components in a graph. Let gn,k be the number of simple
graphs with V = n that have exactly k components. The generating function is G(x, y) =
∑

n,k gn,k(xn/n!)yk because the vertices are labeled but the components are not. Of course,

a connected graph has exactly one component. Thus C(x, y) = C(x)y. We have G(x, y) =
exp(C(x)y). Since exp(C(x)) = G(x), it follows that

G(x, y) = G(x)y . 11.20

What does this expression mean; that is, how should one interpret G(x)y?
We can write G(x) = 1 + xH(x) for some power series H(x). By the binomial theorem for

arbitrary powers we have

G(x)y =
∞
∑

k=0

(

y

k

)

xkH(x)k. 11.21

This expression makes perfectly good sense: We have
(

y

k

)

=
y(y − 1) · · · (y − k + 1)

k!
,

and if we want a coefficient, say that of xnym, we need only look at a finite number of terms,
namely those with k ≤ n. (You may be concerned that (11.21) is really the same as G(x, y) =
exp(yC(x)). It is. This can be shown by formal power series manipulations.)

It may appear that (11.20) gives us something for nothing—just by knowing the number of
graphs by vertices we can determine the number of graphs by both vertices and components.
Unfortunately, we don’t get this for nothing because calculation of numerical values for (11.20)
can involve a fair bit of work.

• We can keep track of the number of edges in a graph. Let gn,q be the number of simple graphs

with V = n that have exactly q edges and define cn,q similarly. Since each of the
(

n
2

)

elements

of P2(V ) may be an edge or not,
∑

q gn,qz
q = (1 + z)(

n

2). Thus

G(x, z) =
∑

n≥0

(xn/n!)
∑

q≥0

gn,qz
q =

∞
∑

n=0

(1 + z)(
n

2)(xn/n!)

and C(x, z) = ln(G(x, z)). Unfortunately, no simple formula is known for the sum.

Special collections of graphs: We can limit our attention to particular subsets of the set of all labeled
graphs. How is this done?

Let C be some set of connected graphs and let G(C) be all the graphs whose connected com-
ponents lie in this collection. Suppose the collection C satisfies the condition that the number of n
vertex graphs in the set C depends on n and not on the labels of the vertices. In this situation, we
can still derive our equation G = eC and can still keep track of other objects besides vertices. Let’s
look at some examples.

• Suppose that the connected components are complete graphs; i.e., every vertex in the component
is connected to every other. The only thing that distinguishes one component from another is
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its set of vertices. Thus we can identify such a graph with a partition of its vertex set in which
each block corresponds to the vertex set of a component. This is a bijection between this class
of graphs and partitions of sets. We easily have cn = 1 for all n > 0 and so C(x) = ex − 1.
Consequently, G(x) = exp(ex − 1). The number of components of such a graph corresponds to
the number of blocks in the partition. Thus G(x, y) = exp((ex − 1)y), in the notation of (a), is
the generating function for the Stirling numbers of the second kind. Hence Example 11.7 is a
special case of our G = eC formula.

• Our next illustration, cycles of a permutation, will be a separate example.

Example 11.11 Permutations and their cycles Let L be a set of positive integers and let
sn be the number of permutations of n such that all the cycle lengths are in L. Some examples are

(a) L is all positive integers so sn counts all permutations;

(b) L = {2, 3, . . .} so sn counts derangements;

(c) L = {1, 2} so sn counts involutions.

We’ll obtain a generating function for sn. In this case, the labels are simply the integers n that are
being permuted.

One approach is to draw a directed graph with vertex set n and an edge (i, j) if the permutation
maps i to j. This is a graph whose components are cycles and the lengths of the cycles are all in L.
We can then use the approach in the previous example. This is left for you to do. We’ll “forget” the
previous example and go directly to the Exponential Formula.

We can construct a permutation, by choosing its cycles. Let a structure in C be a cycle. The
parts of the structure are the things permuted by the cycle. Let a structure in S be a permutation.
When a permutation is rooted by choosing an element of n, it breaks up into a rooted cycle and an
unrooted permutation. Thus the Exponential Formula can be used.

Let cn be the number of n long cycles that can be made from n. By the Exponential Formula,

C(x) = EC(x) =
∑

n≥1

cn
xn

n!

and

S(x) = ES (x) = eC(x) = exp
(

∑

n≥1

cn
xn

n!

)

.

We need to determine cn. Since all cycle lengths must lie in L, cn = 0 when n 6∈ L. Suppose
n ∈ L. To construct a cycle f : n → n, we specify f(1), f2(1) = f(f(1)), f3(1), . . ., fn−1(1). Since we
want a cycle of length n, fn(1) = 1 and the values 1, f(1), f2(1), . . . , fn−1(1) are all distinct. Since
these are the only conditions, f(1), f2(1), . . . , fn−1(1) can be any permutation of 2, 3, . . . , n. Thus
cn = (n − 1)!. It follows that

S(x) = exp

(

∑

k∈L

xk/k

)

. 11.22

Let’s reexamine the three examples of L that were mentioned above. Let y stand for the sum in
(11.22).

(a) When L is all positive integers,

y =

∞
∑

k=1

= − ln(1 − x)

and so S(x) = 1/(1 − x) =
∑

n≥0 xn =
∑

n≥0 n!xn/n!. Hence sn = n!, which we already

knew—there are n! permutations of n.
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(b) For derangements, y equals its value in (a) minus x and so

S(x) =
e−x

1 − x
,

which we obtained in Example 11.4 (p. 318) by other methods.

(c) For involutions, y = x + x2/2 and so

S(x) =
∞
∑

k=0

(x + x2/2)k

k!
=

∞
∑

k=0

k
∑

j=0

(

k

j

)

xk−j(x2/2)j

k!
.

Collecting the terms with k + j = n, we obtain

sn =

n
∑

j=0

n!

j! 2j(n − 2j)!
,

which we obtained by a counting argument in Theorem 2.2 (p. 48).

Example 11.12 Permutations and their cycles (continued) We can keep track of other
information as well, provided it suffices to look at each cycle separately. In an extreme case, we
could keep track of the number of cycles of each length. This requires an infinite number of classes
of unlabeled parts, one for each cycle length. Let the associated variable for cycles of length k be
zk. The resulting generating function will be an EGF in the size of the set being permuted, but an
ordinary generating function in each zk since cycles are not labeled. You should be able to show that
the generating function is

exp

(

∑

k∈L

zkxk

k

)

. 11.23

If we simply keep track of the size of the set being permuted and the number of cycles in the
permutation, the generating function is just the G(x, y) of (11.20). You should be able to see why
this is so . If not, the second paragraph of the previous example may help. Another way to see it
is to use (11.23) with zk = y for all k. Let z(n, k) be the number of permutations of n that have
exactly k cycles. These are called the signless Stirling numbers of the first kind. We have just seen
that

Z(x, y) =
∑

n,k≥0

z(n, k)(xn/n!)yk =

(

1

1 − x

)y

= (1 − x)−y . 11.24

Equating coefficients of xn/n!, we obtain

∑

k

z(n, k)yk = (−1)nn!

(−y

n

)

= y(y + 1) · · · (y + n − 1).

We can use our generating function to study the expected number of cycles. The method for
doing so was worked out in (10.21) (p. 284). Review that equation. Now the random variable Xn is the
number of cycles and our generating function is Z(x, y) instead of A(x, y) and it is exponential in x.
Since it is exponential, we should have a factor of n! in both the numerator and denominator of (10.21)
but, since it appears in both, it cancels out. On with the calculations! Z(x, 1) = (1−x)−1 =

∑

n≥0 xn,

so the denominator in (10.21) is 1. We have Zy(x, y) = ln(1 − x)(1 − x)−y and so

Zy(x, 1) =
1

1 − x
(− ln(1 − x)) =

1

1 − x

∑

k≥1

xk

k

by Taylor’s theorem for − ln(1 − x). Finally [xn] Zy(x, 1) =
∑n

k=1
1
k , which you can work out by

expanding (11.24) further or by using Exercise 10.1.6 (p. 274).
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We’ve just worked out that the average number of cycles in a permutation of n is
∑n

k=1
1
k , a result

that was derived by other means in Example 2.8 (p. 47). Using Riemann sum approximations as we
did in deriving (10.30) from (10.29), it follows that the average number of cycles in a permutation
of n is ln n + O(1) as n → ∞.

Let’s work out the variance using (10.22) (p. 285). We have Zyy(x, y) = (− ln(1− x))2(1−x)−y .
Proceeding as in the previous paragraph,

[xn] Zyy(x, 1) =
n
∑

k=0

[xk] (− ln(1 − x))2 =
∑

k=0n

∑

i+j=k

1

i

1

j
=

∑

i+j≤n

1

i

1

j
.

Thus

var(Xn) =
∑

i+j≤n

1

i

1

j
+ E(Xn) −

( n
∑

i=1

1

i

)2

=
∑

i+j≤n

1

i

1

j
+ E(Xn) −

∑

i,j≤n

1

i

1

j
= E(Xn) −

∑

i,j≤n
i+j>n

1

i

1

j
.

We’ve already done a lot of computations, so we’ll just remark without proof that

∑

i,j≤n
i+j>n

1

i

1

j
∼
∫ 1

0

− ln(1 − x)

x
dx =

∞
∑

n=1

1

n2
=

π2

6
.

Thus var(Xn) ∼ E(Xn) ∼ lnn. By Chebyshev’s inequality (C.3) (p. 385), it’s unlikely that

|Xn − lnn|/(lnn)1/2 will be large.

*Example 11.13 Permutations and their cycles (concluded) You should review the discus-
sion of parity of a permutation in Definition 2.4 (p. 49) and Theorem 2.3. Let L be a set of positive
integers. Let en (resp. on) be the number of even (resp. odd) permutations of n all of whose cycle
lengths are in L. Let pn = en − on. Using the previous example and Theorem 2.3(c), you should be
able to show that the exponential generating function for pn is given by

P (x) = exp

(

∑

k∈L

(−1)k−1xk

k

)

.

Let’s look at some special cases.
If L be the set of all positive integers, then

∑

k∈L

(−1)k−1xk

k
=

∞
∑

k=1

(−1)k−1xk

k
= ln(1 + x)

and so P (x) = 1 + x. In other words, when n > 1, there are as many even permutations of n as
there are odd and so en = on = n!/2. We already knew this in Theorem 2.3.

If L = {2, 3, . . .}, we are looking at derangements. In this case

∑

k∈L

(−1)k−1xk

k
=

∞
∑

k=1

(−1)k−1xk

k
− x = ln(1 + x) − x

and so P (x) = (1 + x)e−x. With a little algebra, pn = (−1)n−1(n − 1). Thus the number of even
and odd derangements of n differ by n − 1, and there are more even derangements if and only if n
is odd. This is a new result for us, and it’s not clear how to go about proving it without generating
functions.

Suppose L consists of all positive integers except k > 2. Reasoning as in the previous paragraph,

P (x) = (1 + x)e±xk/k, where the sign is plus when k is odd. If you expand P (x) in a power series,
you should see that pn 6= 0 if and only if n is a multiple of k or one more than a multiple of k. We
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have shown that, for k > 2, among the permutations of n with no k-cycles, the numbers of even and
odd permutations are equal if and only if neither n nor n − 1 is a multiple of k.

Example 11.14 Rooted labeled trees Let’s study tn, the number of labeled rooted trees
with V = n.

If we remove the root vertex from a rooted tree, making all of its sons new root vertices, we
obtain a graph all of whose components are rooted labeled trees. This process is reversible.

Let T be the EGF for the tn’s. By the Exponential Formula, the generating function for graphs
all of whose components are rooted labeled trees is eT . Call all such graphs F . Thus EF = eT . The
process we described in the previous paragraph constructs a rooted tree by

• partitioning the labels into (K, L) with |K| = 1,

• assigning the label in K to the new root,

• choosing an element F ∈ F with labels L, and

• joining the roots of the trees in F to the new root.

By the Rule of Product T = xEF = xeT .

How can we obtain tn from the equation T = xeT ? There is a technique, called Lagrange

inversion, which can be useful in this situation.

Theorem 11.6 Lagrange Inversion Let T (y), f(y) and g(y) be power series with
f(0) 6= 0. Suppose that T (x) = xf(T (x)). Then the coefficient of xn in g(T (x)) is the coef-
ficient of un−1 in g′(u)(f(u))n/n; that is, [xn] g(T (x)) = [un−1]

(

g′(u)f(u)n/n
)

.

Proofs and generalizations of Lagrange inversion are discussed at the end of this chapter.
In our particular case, g(u) = u and f(u) = eu. Thus

tn/n! = [un] enu/n = (nn/n!)/n.

Thus tn = nn−1.
Incidentally, we choose the symbol F because graphs whose components are trees are called

forests.

Exercises

*11.2.1. Let T be a collection of structures, each of which can have labeled unlabeled parts. An example is the
partitions of an n-set counted by n > 0 and by the number of blocks. Let T (x, y) be the generating
function for T , where it is exponential in the labeled parts (using x) and ordinary in the unlabeled
parts (using y). State and prove a Rule of Product for these generating functions.

11.2.2. Let T be a collection of structures, each of which has at least one labeled part. Let ET be the EGF
for T , with respect to these labeled parts. Prove the following results and compare them with those
in Exercise 10.4.1 (p. 298). When talking about lists (or sets) of structures in this exercise, the labels
that are used for the objects all differ; that is, structures at different positions in a list (or set) must
have different labels. If a totality of n objects in a class appear, they are to use the labels in n.

(a) The EGF for k-lists of structures is
(

ET
)k

.

(b) The EGF for lists of structures is (1−ET )−1. Here lists of any length are allowed, including the
empty list.

(c) The EGF for sets of structures, where each structure must come from T is exp
(

ET
)

.

(d) The EGF for circular lists is − ln
(

1 − ET
)

.

These results could be generalized to allow for unlabeled parts by using the result of Exercise 11.2.1.
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11.2.3. Let z(n, k) be the signless Stirling numbers of the first kind, defined in Example 11.12.

(a) Let Zn(y) =
∑

k z(n, k)yk. Show that Zn(y) = Zn−1(y) × (y + n − 1) and use this to deduce
the recursion

z(n, k) = z(n − 1, k − 1) + (n − 1)z(n − 1, k).

(b) Prove the previous recursion by a direct counting argument using the fact that z(n, k) is the
number of permutations of n with exactly k cycles.

11.2.4. Let an be the number of ways to place n labeled balls into boxes numbered 1, 2, · · · so that the number
of balls in the kth box is a multiple of k. (This is the labeled analog of the box–ball interpretation
of partitions of a number.) The EGF for a can be written as a product of sums. Do it.

11.2.5. Let an be the number of sequences of A’s B’s and C’s such that any letter that actually appears in
the sequence must appear an odd number of times.

(a) Show that the EGF for an is

(

1 +
ex − e−x

2

)3

.

(b) Show that for n odd an = (3n + 9)/4 and for n > 0 and even an = 3 × 2n−1.

11.2.6. Let an,k be as in Exercise 11.2.5, except that k different letters are used instead of just A, B and C.

(a) Obtain a generating function
∑

n an,kxn/n!.

(b) Show that an,k equals
∑
(

k
j

)

2−jcn,j , where the sum is over all j with the same parity as n and
∑

n cn,jx
n/n! = (ex − e−x)j .

*(c) Can you obtain a more explicit formula for an,k?

11.2.7. Recall that Bn is the number of partitions of the set n. Let B(x) be the EGF. Show that
B′(x) = exB(x) and use this to show that

Bn+1 =

n
∑

k=0

(

n

k

)

Bk.

11.2.8. Let an be the number of partitions of n such that each block has an odd number of elements and let

A(x) be the EGF. Use the Exponential Formula to show that A(x) = exp(ex − e−x)/2).

11.2.9. Let C(x) and G(x) = exp(C(x)) be the EGFs for some collection of connected graphs and some
collection of graphs, respectively.

(a) Let H(x) = C(x)G(x) be an EGF for the sequence hn. Using the Exponential Formula, show
that the average number of components in the graphs counted by gn is hn/gn.

(b) Prove the formula in the previous part by a simple application of the Rule of Product.
Hint. Remember that H(x) will be counting the total number of components, not the average
number.

(c) Deduce the formula at the end of Example 11.12 for the average number of cycles in a permu-
tation.

(d) Deduce that the average number of blocks in a partition of n is
Bn+1

Bn
− 1.

(e) Obtain a formula like the previous one for the average number of cycles in an involution.

11.2.10. Let an be the number of partitions of n where the order of the blocks is important. Obtain the EGF

A(x) and use it to show that an =
∑

k>0 kn/2k+1.

11.2.11. A permutation f of n is said to be alternating if f(1) < f(2) > f(3) < . . .. Let an be the number
of alternating permutations of n. It will be convenient to set a0 = 1. Let A be the EGF for the an’s
and let B be the EGF for those an with odd n; that is, b2n = 0 and b2n+1 = a2n+1. By considering

f(1), . . . , f(k − 1) and f(k + 1), . . . , f(n), where k = f−1(n), show that

B′(x) = B(x)2 + 1 and A′(x) = B(x)A(x) + 1.

Verify that A(x) = tan x + sec x and B(x) = tan x.
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11.2.12. A k-ary tree is a rooted tree in which each nonleaf vertex has exactly k sons. Let tn be the number
of unlabeled plane k-ary trees having n nonleaf vertices.

(a) Prove that the ordinary generating function for tn satisfies the equation T (x) = 1 + xT (x)k.

(b) Use Lagrange inversion (Theorem 11.6) to show that tn = 1
n

(

nk
n−1

)

.

Hint. Apply the theorem to S(x) = T (x) − 1.

11.2.13. A function f : A → A is said to have a square root if there is a function g:A → A such that
g(g(a)) = f(a) for all a ∈ A.

(a) Show that a permutation has a square root if and only if, it has an even number of cycles of
length 2k for each k > 0.

(b) Let sn be the number of permutations of n which have a square root. Show that

S(x) =
∑

n≥0

snxn/n! = exp

( ∞
∑

k=1
k odd

xk

k

) ∞
∏

k=2
k even

exp(xk/k) + exp(−xk/k)

2
.

Hint. One way is to use exp
(

∑∞
k=1 zkxk/k

)

and then use bisection of series for each even k

one by one. Another approach is to do each cycle length separately and then use the Rule of
Product.

(c) Using cosh(u) = (eu + e−u)/2 and bisection of the Taylor series for ln(1 − x), show that

S(x) =

√

1 + x

1 − x

∏

cosh(x2k/2k).

(d) By taking logarithms, differentiating and then multiplying by S(x) conclude that S′(x) =

S(x)B(x) where B(x) is (1 − x2)−1 plus the sum of xn−1 tanh(xn/n) over all even positive
n. How much work is involved in using this to construct tables of sn? Can you think of an easier
method?

11.2.14. Let an,k be the number of permutations of n having exactly k cycles of even length.

(a) Show that

∑

n,k

an,kxnyk

n!
= (1 − x2)−y/2

√

1 + x

1 − x
.

(b) Conclude that the average number of even length cycles in a permutation of n is

bn/2c
∑

k=1

1

2k
,

where the floor function bxc is the largest integer not exceeding x.

(c) Show that the number of odd length cycles minus the number of even length cycles averaged
over all permutations of n is

n
∑

k=bn/2c+1

1

k

and that this sum approaches ln 2 as n → ∞.
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*11.2.15. Let tn,k be the number of n-vertex rooted labeled trees with k leaves. Let L(x, y) =
∑

n,k tn,k(xn/n!)yk.

(The generating function for leaves is ordinary because the labels on the leaves have already been
taken into account when we counted vertices.) Let T (x) be the EGF for rooted labeled trees by
number of vertices.

(a) Show that L = xeL − x + xy.

(b) Let U(x) be the EGF
∂L(x,y)

∂y

∣

∣

∣

y=1
. Show that the average number of leaves in an n-vertex rooted

labeled tree is un/nn−1.

*(c) Show that U(x) = x2T ′(x) + x and use this to show that the average number of leaves in an

n-vertex rooted labeled tree is n(1 − 1/n)n−1. Conclude that the probability that a randomly
chosen vertex is a leaf approaches 1/e as n → ∞.

*11.2.16. In this exercise, you’ll study the average height of vertices in rooted labeled trees. The height of a
vertex is the number of edges on the path from it to the root. For a rooted tree T , let h(T ) be the
sum of the heights of the vertices of T . Let tn,k be the number of n-vertex rooted labeled trees T

with h(T ) = k and let H(x, y) =
∑

n,k tn,k(xn/n!)yk. If T has n vertices, the average height of a

vertex in T is h(T )/n. Let µ(n) be the average of h(T )/n over all n-vertex rooted labeled trees.

(a) Show that

µ(n) = n−n
∑

k

ktn,k

and that nnµ(n) is the coefficient of xn/n! in D(x) =
∂H(x,y)

∂y

∣

∣

∣

y=1
.

(b) Show that H(x, y) = x exp
(

H(xy, y)
)

.

(c) Show that

D(x) =
xT ′(x)T (x)

1 − T (x)
=

(

T (x)

1 − T (x)

)2

,

where T (x) is the EGF for rooted labeled tree by vertices.

(d) Use Lagrange inversion with g(u) =
(

u
1−u

)2
to show that

µ(n) =
2 (n − 1)!

nn

n−2
∑

k=0

(

k + 2

2

)

nn−k−2

(n − k − 2)!
.

One can obtain estimates of µ(n) for large n from this formula, but we will not do so.

11.2.17. A functional digraph is a simple digraph in which each vertex has outdegree 1. It is connected if the
associated graph is connected. Let Fn be the set of connected n-vertex functional digraphs and let
fn = |Fn|.
(a) Define a function ϕ from nn to digraphs with V = n as follows:

for g ∈ nn, ϕ(g) = (V, E) where E = {(x, g(x)) | x ∈ n}.
Prove that ϕ is a bijection from nn to the set of all functional digraphs with vertex set n. (See
Example 5.9 (p. 142).)

(b) Show that a connected functional digraph consists of a circular list of rooted trees, with each
tree’s edges directed toward the root and with the roots joined in a cycle (as indicated by the
circular list). We’re not asking for a proof, just a reasonable explanation of why this is true.
Drawing some pictures may help.

(c) Show that
∑

n fnxn/n! = − ln(1 − T (x)), where T (x) is the EGF for rooted labeled trees.

(d) Using the fact that T (x) = xeT (x) and Lagrange inversion, deduce

fn = (n − 1)!

n−1
∑

k=0

nk

k!
.
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11.2.18. A rooted map is an unlabeled graph that has been embedded in the plane and has had one edge
distinguished by assigning a direction to it and selecting a side of it. Tutte developed some clever
techniques for counting such structures. Using them it can be shown that

M(x) = (1 − 4u)(1 − 3u)−2 where x = u(1 − 3u)

and M is the ordinary generating function for mn, the number of n-edge rooted maps. Prove that

mn =
2(2n)! 3n

n! (n + 2)!
.

Hint. The notation may be a bit confusing for using Theorem 11.6. Note that T (x) is simply the
function that is given implicitly, so in this case T (x) = u.

11.3 Symmetries and Pólya’s Theorem

In this section we will discuss a generalization of the Burnside Lemma. We will then consider an im-

portant special case of this generalization, namely Pólya’s Theorem. You should review the statement

and proof of the Burnside Lemma (Theorem 4.5 (p. 112)).

Let S be a set with a permutation group G. Recall that we say x, y ∈ S are equivalent if y = g(x)

for some g ∈ G. (These equivalence classes are referred to as orbits of G in S.) Suppose further that

there is a function W defined on S such that W is constant on equivalence classes. This means that if

x and y are equivalent, then W (y) = W (x). We can rephrase “W is constant on equivalence classes”

as “W (g(x)) = W (x) for all g ∈ G and all x ∈ S.”

You may have noticed that W is not completely specified because we haven’t defined its range.

We don’t really care what the range is as long as addition of range elements and multiplication of

them by rationals is possible. Thus the range might be the real numbers, polynomials with rational

coefficients, or lots of other things.

Let E be the set of equivalence classes of S with respect to the group G. (Don’t confuse E with

our notation for exponential generating functions.) If B ∈ E , define W (B) = W (y), where y is any

element of B. This definition makes sense because W is constant on equivalence classes.

Theorem 11.7 The Weighted Burnside Lemma With the above definitions,

∑

B∈E
W (B) =

1

|G|
∑

g∈G

N(g),

where N(g) is the sum of W (x) over all x ∈ S such that g(x) = x.

Before reading further, you should be able to see that the case W (x) = 1 for all x ∈ S is just

Burnside’s Lemma. This is simply a matter of understanding the notation we’ve introduced.
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Proof: The proof of this result is a simple modification of the proof of Burnside’s Lemma. Here
it is. You should be able to supply the reasons for all the steps by referring back to the proof of
Burnside’s Lemma.

∑

B∈E
W (B) =

∑

B∈E

∑

y∈B

W (B)

|B| =
∑

B∈E

∑

y∈B

W (y)

|By|

=
∑

y∈S

|Iy |
|G|W (y) =

1

|G|
∑

y∈S

(

∑

g∈G

χ(g(y) = y)W (y)

)

=
1

|G|
∑

g∈G

(

∑

y∈S

χ(g(y) = y)W (y)

)

=
1

|G|
∑

g∈G

N(g).

Example 11.15 The Ferris wheel Let’s return to the “Ferris wheel” problem of Example 1.12
(p. 13). Recall that we want to look at circular arrangements of ones and twos where the circles
contain six digits. In this case, the group G contains 6 elements, which can be described by how
they rearrange the six positions on the Ferris wheel. We called the group elements g0 through g5,
where gi shifts things circularly i positions.

As already noted, if we set W (x) = 1 for all x, then we simply end up counting all equivalence
classes. Suppose, instead, that we set W (x) = 1 if x contains exactly 4 ones and W (x) = 0 otherwise.
This is an acceptable definition of W because two equivalent sequences contain the same number
of ones. In this case, we end up counting the equivalence classes of sequences that contain exactly
4 ones.

A more interesting example is obtained by letting z be a variable and setting W (x) = zk, where

k is the number of ones in x. In this case the coefficient of zk in W (E) =
∑

B∈E W (B) is the

number of equivalence classes whose sequences each contain exactly k ones. In other words, W (E) is
a generating function for equivalence classes of sequences by number of ones. Let’s compute W (E)
in this case. For N(g0), any sequence is allowed since g0(x) = x for all x. Thus each position can be

either a two or a one. By the Rules of Sum and Product for generating functions, N(g0) = (1 + z)6.
If g1(x) = x, all positions must be the same and so N(g1) = 1+ z6. If g2(x) = x, the even numbered
positions have the same value and the odd numbered positions must have the same value. By the
Rules of Sum and Product for generating functions, N(g2) = (1+ z3)2. Similarly, N(g3) = (1+ z2)3,
N(g4) = N(g2) and N(g5) = N(g1). Thus we obtain

W (E) =
1

6

(

(1 + z)6 + 2(1 + z6) + 2(1 + z3)2 + (1 + z2)3
)

= 1 + z + 3z2 + 4z3 + 3z4 + z5 + z6.

11.25

One does not need this machinery to compute the generating function. It is quite simple to construct
it from the leaves of the decision tree in Figure 4.2.

We now describe a particularly important case of the Weighted Burnside Lemma. Let A and B
be finite sets, let S be the functions BA and let G be a permutation group on A. We make G into
a permutation group on BA by defining g(f) for every g ∈ G and every f ∈ BA to be the function
given by

(g(f))(a) = f(g(a)) for all a ∈ A.

Let W be a function from B to a set in which we can divide by integers, add and multiply. Among
such sets are the set of real numbers, the set of polynomials in any number of variables, and the set
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of power series. (There will be a concrete example soon.) We make W into a weight function on BA

by setting

W (f) =
∏

a∈A

W (f(a)).

Why is W constant on equivalence classes? Since f and g(f) are equivalent, the second line of g(f)

in two line form is simply a permutation of the second line of f ; however, W (f) is simply the product

of the weights of the elements in its second line, without regard to their order.

Example 11.16 The Ferris wheel revisited Let’s return to the previous example. We can

phrase it in our new terminology:

A = {1, 2, 3, 4, 5, 6};
B = {1, 2};
G = the circular shifts of 1,2,3,4,5,6;

W =
(

1 2
z 1

)

.

For example, if g = (1, 3, 5)(2, 4, 6) and f =
(

1 2 3 4 5 6
1 2 2 1 2 1

)

, then g(f) =
(

1 2 3 4 5 6
2 2 1 1 1 2

)

and W (f) = z3.

You should be able to verify the following observations.

(a) An element of BA can be viewed as a 6-long sequence of ones and twos.

(b) G permutes these 6-long sequences just as the G in the previous example did.

(c) W (f) is z raised to a power which equals the number of ones in the sequence f(1), . . . , f(6).

These observations show that this problem is the same as the previous one.

Why is this special situation with S = BA important? First, because many problems that are

done with the Weighted Burnside Lemma can be phrased this way. Second, because it is easier to

apply the lemma in this particular case. The method for applying the lemma is known as Pólya’s

Theorem. Before stating the theorem, we’ll look at a special case.

Example 11.17 The Ferris wheel revisited In order to compute N(g) for the Ferris wheel, we

need to study those functions f such that g(f) = f . Look at g = (1, 3, 5)(2, 4, 6) again. You should be

able to see that (g(f))(a) = f(a) for all a ∈ A if and only f(1) = f(3) = f(5) and f(2) = f(4) = f(6).

For example (g(f))(1) = f(g(1)) = f(3), and so g(f) = f implies that f(3) = f(1). More generally,

you should be able to see that for any permutation g, we have g(f) = f if and only if f is constant

on each of the cycles of g.

To compute the sum of the weights of the functions f with g(f) = f , we can look at how to

construct such a function:

1. First choose a value for f on the cycle (1, 3, 5) AND

2. then choose a value for f on the cycle (2, 4, 6).

On the first cycle, the value of f is either one OR two. If f is one, this part of f contributes z3 to

the weight W (f). If f is two, this part of f contributes 1 to the weight W (f). Using the Rules of

Sum and Product, we get that all f with g(f) = f contribute a total of (z3 + 1)(z3 + 1); that is,

N(g) = (z3 + 1)2.
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In order to state Pólya’s Theorem, we must define the cycle index ZG of a group G of permu-
tations. Let ci(g) be the number of cycles of g of length i. Then

ZG(x1, x2, . . .) =
1

|G|
∑

g∈G

x1
c1(g)x2

c2(g) · · · .

If G is the cyclic shifts of the sequence 1, 2, 3, 4, 5, 6, you should be able to show that

ZG =
1

6

(

x1
6 + 2x6 + 2x3

2 + x2
3
)

. 11.26

Theorem 11.8 Pólya’s Theorem If S = BA and G and W are defined as above, then
∑

E∈E
W (E) = ZG(x1, x2, . . .),

where

xi =
∑

b∈B

(W (b))i.

This can be proved using the idea that we introduced in the previous example together with the
Weighted Burnside Lemma. The proof is left as an exercise. You will probably find it easier to prove
after reading some examples.

Example 11.18 The Ferris wheel revisited Now we’ll apply Pólya’s Theorem to derive

(11.25). Since B = {1, 2} and W (B) =
(

1 2
z 1

)

, we have x1 = z+1, x2 = z2+1 and so on. Substituting

these values into (11.26), we obtain (11.25).

Now let’s consider a Ferris wheel of arbitrary length n. Our group consists of the n cyclic shifts
g0, . . . , gn−1, where gi shifts the sequence circularly i positions. This group is known as the cyclic

group of order n and is usually denoted Cn. In order to apply Pólya’s Theorem, we need to compute
ZCn

, which we now do.

The element gi shifts something in position p to position p + i, then to p + 2i and so on, where
all these values are reduced modulo n, which means we divide them by n and keep the remainder.
For example, if n = 6, i = 4 and p = 3, the successive values of the positions are 3, 1 (the remainder
of 7/6), 5 and back to 3. You should be able to see easily that the length of the cycle containing p
depends only on n and gi and not on the choice of p. Thus all cycles of gi have the same length.
What is that length?

Suppose we return to position p after k steps. This can happen if and only if dividing p + ki by
n gives a remainder of p. In other words, ki must be a multiple of n. Since ki is also a multiple of i,
it must be a multiple of the least common multiple of i and n, which is written lcm(i, n). Thus, the
smallest possible value of ki is lcm(i, n). It follows that

the length of each cycle of gi is
lcm(i, n)

i
. 11.27

Since the cycles must contain n items between all of them, the number of cycles is

n

lcm(i, n)/i
=

ni

lcm(i, n)
= gcd(i, n),

where the last equality is a fairly easy number theory result (which is left as an exercise). Incidentally,
this number theory result enables us to rewrite (11.27) as

the length of each cycle of gi is
n

gcd(i, n)
.
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It follows from all this discussion, that gi contributes the term (xn/k)k, where k = gcd(n, i), to the
sum for the cycle index of Cn. Thus

ZCn
=

1

n

n−1
∑

i=0

(xn/ gcd(n,i))
gcd(n,i). 11.28

With n = 6, (11.28) gives us (11.26), as it should. Carry out the calculation. Notice that some
of the terms were equal so we were able to collect them together. It would be nice to do that in
general. This means we need to determine when various values of gcd(n, i) occur. We leave this as
an exercise.

Example 11.19 Unlabeled rooted trees Although we have studied the number of various
types of unlabeled RP-trees, we haven’t counted those that are not in the plane. There’s a good
reason for that—we need Pólya’s theorem or something similar.

We’ll look at unlabeled rooted trees where each vertex has at most three edges directed away
from the root. Let tn be the number with n vertices. We want to study T (x), the ordinary generating
function for the sequence t0, t1, . . .. There are various reasons for doing this. First, it is not too difficult
and not too easy. Second, these trees correspond to an important class of organic compounds: Each
of the vertices corresponds to a carbon atom. These carbon atoms are all joined by single bonds.
A “radical” (for example, –OH or –COOH) is attached by a single bond to the carbon atom that
corresponds to the root Finally, to give each carbon atom valency four, hydrogen atoms are attached
as needed. Compounds like this with the –OH radical are known as alcohols. Two alcohols with the
same number of carbon atoms but different associated trees are called isomers. The two isomers of
propyl alcohol are

OH

C C CH

H

H H

H

H

H OHC C CH

H

H

H

H

H

H

The corresponding rooted trees are •◦ ◦ and •◦ ◦ , respectively, where • indicates a root and ◦ a
nonroot.

We can approach this problem the same way we did RP-trees: We take a collection of unlabeled
rooted trees and join them to a new root. There are two important differences from our previous
considerations of RP-trees.

• Since a vertex has at most three sons, we must take this into account. (Previously we dealt
mostly with exactly two sons.)

• There is no ordering among the sons. This is what we mean by not being in the plane—the sons
are not ordered from left to right; they are simply a multiset of trees. In terms of symmetries,
this means that all permutations of the sons give equivalent trees.

Let’s begin with the problem of at most three sons. One way to handle this is to sum up the
cases of exactly one, two and three sons. There is an easier way. We will allow the empty tree, so
t0 = 1. By taking three trees, we get at most three sons since any or all of them could be the empty
tree.

Pólya’s Theorem can be applied in this situation. In the notation of the theorem, A = 3 and B
is the set of rooted trees that we are counting. A function in BA selects a list of three trees to be
the sons of the root. Since all permutations of these sons are possible, we want to study the group
of all possible permutations on three things. This group is known as the symmetric group on three
things and is denoted S3. More generally, one can speak of Sn. Since all permutations of n things
are allowed, Sn contains n! elements, the number of permutations of an n-set.

By writing down all six permutations of 3, you should be able to easily show that

ZS3
=

x3
1 + 3x1x2 + 2x3

6
.
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We need to compute xi so that we can apply Pólya’s Theorem. As noted earlier, B is the set of
all unlabeled rooted trees of the sort we are constructing. W (b) for a tree b is simply xk, where k is
the number of vertices of b. It follows that xi = T (xi). Thus we have

T (x) = 1 + x
T (x)3 + 3T (x)T (x2) + 2T (x3)

6
, 11.29

where the “1+” is present because a (possibly empty) tree is constructed by taking the empty set
OR . . ..

Equation (11.29) can be used to compute tn recursively. You should be able to do this. If you do
this for n up to five or so, you will discover that it is probably easier to simply list the trees and then
count them. On the other hand, suppose you want the answer up to n = 20. You will probably want
to use a computer. While it is certainly possible to write a program to list the trees, it is probably
easier to use a symbolic manipulation package. Simply start with T (x) = 1, which is obviously the
beginning of the generating function. Then apply (11.29) n times to compute new values of T (x).
To avoid overflow and/or excessive running time, you should truncate all calculations to terms of
degree at most n.

There is another situation in which (11.29) is better than listing. Suppose that we want to
get an estimate of, say t100. Asymptotic methods provide a way for doing this using (11.29). See
Example 11.34 (p. 354).

In general, computing the cycle index of a group is not a simple matter. The examples considered
so far have involved relatively simple groups. The following example deals with a somewhat more
complicated situation—the cycle index of the group of symmetries of a cube, where the group is a
permutation group on the faces of the cube.

Example 11.20 Symmetries of the cube In Exercise 4.2.7 (p. 110), you used a decision tree
to study the ways to color the faces of a cube. Here we’ll use a cycle index polynomial to study it.
Before doing this, we must answer two questions:

• What symmetries are possible? Certainly, we should allow the rotations of the cube. There are
other symmetries that involve reflections. Whether we allow these or not will depend on the
problem at hand. A solid cube in the real world can only be rotated; however, reflections of a
cube that is associated with a chemical compound (like the trees in the previous example) may
be a perfectly acceptable physical manipulation. We’ll begin with just rotations and then allow
reflections as well.

• What objects are being permuted? Obvious choices are the vertices, edges and faces of the cube.
There are less obvious ones such as diagonals. Different choices for the objects will, in general,
lead to different permutation groups and hence different cycle index polynomials. Since we are
coloring faces, we’ll choose the faces of the cube and leave other objects as exercises.

Before proceeding, we recommend that you find a cube if you can. Possibilities include a sugar cube,
a die and a homemade cube consisting of six squares of cardboard taped together. Here is a picture
of an “unfolded” cube.

1
2 3 4 5

6

11.30

If you imagine the square marked 3 as being the base, squares 1, 2, 4 and 6 fold up to produce sides
and square 5 folds over to become the top.

What axes can the cube be rotated around and through what angles so that it will occupy the
same space? The axes fall into three classes:

• Face centered: This type goes through the centers of opposite pairs of faces. There are three of
them, through the faces 1-6, 2-4 and 3-5. A cube can be rotated 0◦, ±90◦ or 180◦ about such
an axis.
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• Edge centered: This type goes through the centers of opposite pairs of edges. There are six of
them. An edge can be described by the two faces that lie on either side of it. In this notation,
one edge centered axis is 25-34. A cube can be rotated 0◦ or 180◦ about such an axis.

• Vertex centered: This type goes through opposite vertices of the cube. There are four of them,
one of which is 125-346, where a vertex is described by the three faces that meet there. A cube
can be rotated 0◦ or ±120◦ about such an axis.

To compute a term in the cycle index polynomial corresponding to a rotation, we can look at how
the rotation permutes the faces and then determine the term from the cycle lengths. For example,
the face centered rotation about 1-6 through 90◦ gives the permutation (1)(2, 3, 4, 5)(6). This gives
us the term x1x4x1 = x2

1x4. You should be able to establish the following terms by studying your
cube. The letters F, E and V describe the type of axis.

no rotation x6
1

±90◦ F x2
1x4

180◦ F x2
1x

2
2

180◦ E x3
2

±120◦ V x2
3

Altogether there are 24 rotations. (We have counted the rotations through 0◦ just once.)

Before we add up the 24 terms, we must verify that the rotations are all distinct. One way
to do this is by looking at the cycles of the 24 permutations of the faces and noting that they are
distinct. Can you think of another method for seeing that they are distinct? You might try a different
approach—instead of showing that the rotations are distinct directly, show that there must be 24
distinct rotations by a geometric argument and then use the fact that we have found all possible
rotations.

Adding up the 24 terms, the cycle index polynomial for the rotations of the cube in terms of
the faces of the cube is

x6
1 + 6x2

1x4 + 3x2
1x

2
2 + 6x3

2 + 8x2
3

24
. 11.31

It follows that the number of rotationally inequivalent ways to color the faces of a cube using k
colors is

C(k) =
k6 + 6k3 + 3k4 + 6k3 + 8k2

24
=

k6 + 3k4 + 12k3 + 8k2

24
. 11.32

How many rotationally inequivalent ways can the cube be colored with 3 colors so that every color
appears? We cannot substitute directly into the cycle index polynomial, but we can see the answer
with a little thought. Can you do it?

∗ ∗ ∗ Stop and think about this! ∗ ∗ ∗
One solution is to use the Principle of Inclusion and Exclusion together with (11.32). The answer is

C(3) − 3C(2) + 3C(1) − C(0) = 57 − 3 × 10 + 3 × 1 − 0 = 30.

How many rotationally inequivalent ways can we color the faces of a cube with k colors so that ad-
jacent faces have distinct colors? This problem cannot be answered with Pólya’s Theorem; however,
it can be done with Burnside’s Lemma.

We now turn our attention to rotations and reflections of the cube. Imagine the cube made from
(11.30) has been rotated in any fashion. Now carry out the following operations.

• Rotate it so that face 3 is on the bottom and face 2 is on the left.

• Open the cube by cutting two sides of face 4 and all sides of face 5 except the one between it
and face 4.
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This will always lead to the picture in (11.30). Now suppose you do the same thing with a cube that
has been rotated and, possibly, reflected. The result will be either (11.30) or (11.30) with 1 and 6
interchanged. You should convince yourself of this by experimentation or by geometric arguments.

The result of the previous paragraph implies that any reflection and rotation combination can
be obtained as either a rotation or a rotation followed by an interchange of the labels 1 and 6. Using
this observation, the cycle index of the group of rotations and reflections can be computed from a
knowledge of the orbits of the rotations. We will not carry out the tedious details. The result is

x6
1 + 3x4

1x2 + 6x2
1x4 + 9x2

1x
2
2 + 7x3

2 + 6x2x4 + 8x2
3 + 8x6

48

There are alternative geometric arguments that could be used to obtain this result. For example,
one can look at the possible arrangement of faces around the upper left front corner of the cube.

*Example 11.21 Counting unlabeled graphs How many unlabeled graphs are there with n
vertices and q edges? This has many variants: do we allow multiple edges? loops? Are the graphs
directed?

All of these can be done in a similar manner and all lead to messy expressions. We’ll choose the
simplest case: simple directed graphs with loops allowed.

In any of these situations, we use Pólya’s Theorem. Suppose that n, the number of vertices, is
given. Let n be the set of vertices. The functions we consider will be from n×n to {0, 1}. The value

of f((u, v)) is the number of edges from u to v. In the notation of Pólya’s Theorem, S = BA and G
acts on A. We have already said that B = {0, 1} and A = n× n. What is G and what is the weight
W? The group G will be the group of all permutations of n things, but instead of acting on the
vertices n, it must act on the ordered pairs n×n. Most of this example will be devoted to explaining
and computing the cycle index of this group action. W is given by W (i) = yi. The coefficient of yq

will then be the number of unlabeled simple digraphs with n vertices and q edges.

Before turning to the calculations, we remark how some of the other graph counting problems
can be dealt with. If loops are not allowed, remove the n ordered pairs of the form (i, i) from A. If

any number of edges is allowed, replace B by the nonnegative integers, still setting W (i) = yi. To
count (loopless) graphs, replace n × n with P2(n), the set of 2 element subsets of n.

Let g be a permutation acting on n. If we write g in cycle form, it is fairly easy to translate g
into a permutation of n× n. For example, suppose that n = 3 and g = (1, 2)(3). To avoid confusing
ordered pairs with cycles, we will indicate an ordered pair without parentheses and commas, e.g.,
13 instead of (1, 3). Using g, we have the following two line form for the corresponding permutation
of 3 × 3

(

11 12 13 21 22 23 31 32 33
22 21 23 12 11 13 32 31 33

)

,

which you should be able to verify easily. In cycle form this is

(11, 22)(12, 21)(13, 23)(31, 32)(33),

which contributes x1x
4
2 to the cycle index. How do we do this in general?

Suppose u, v ∈ n are two vertices, that u belongs to a cycle of g of length i and that v belongs
to a cycle of length j. The length of the cycle containing uv is the number of times we must apply
g in order to return to uv. After we apply g to uv k times, we will have advanced k positions in the
cycle containing u and k positions in the cycle containing v. Thus, we will return to uv after k times
if and only if k is a multiple of i and k is a multiple of j. The smallest positive such k is lcm(i, j),
the least common multiple of i and j. Thus uv belongs to a cycle of length lcm(i, j) and this cycle
contributes a factor of xlcm(i,j) to a term of the cycle index.

Let’s look more closely at the set of directed edges st that can be formed by choosing s from
the same cycle as u and t from the same cycle as y. There are ij such edges. Like uv, each edge st
lies in a cycle of length lcm(i, j). Thus, there are ij/ lcm(i, j) = gcd(i, j) such cycles.
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Let’s look carefully at what we have shown. If we choose a cycle C of length i and another cycle
D of length j, then the ij ordered pairs in C ×D lie in gcd(i, j) cycles of length lcm(i, j). Thus they

contribute a factor of x
gcd(i,j)
lcm(i,j) to a term of the cycle index.

If g acting on n has exactly νk cycles of length k, the argument in the previous paragraph shows
that it contributes the term

∏

i

∏

j

(

(

xlcm(i,j)

)gcd(i,j)
)νiνj

to the cycle index we are computing. This gives us the following recipe for computing the cycle
index.

Theorem 11.9 To compute the cycle index for the n-vertex unlabeled digraphs (with
loops allowed), start with the cycle index for the set of all n! permutations of n. Replace every
term

ci

n
∏

i=1

xνi

i with ci

∏

i,j

(

xlcm(i,j)

)νiνj gcd(i,j)
,

where the latter product extends over all (i, j).

Exercises

11.3.1. This deals with the cycle index of Cn, the cyclic group. You will need to know that, up to the order
of the factors, every number can be factored uniquely as a product of primes. We take that as given.

(a) Suppose that A = pa1

1 · · · pak

k where p1, . . . , pk are distinct primes. We use the shorthand notation

A = pa for this product. Suppose that B = pb. Let ci = min(ai, bi), di = max(ai, bi), C = pc

and D = pd. Prove that AB = CD, C = gcd(A,B) and D = lcm(A, B). This establishes the
claims in Example 11.18.

(b) Prove that the number of integers i in {1, . . . , n} for which gcd(n, i) = k is

• zero if k does not divide n;

• the number of integers j in {1, . . . , n
k } for which gcd(j, n/k) = 1 if k divides n. This latter

number is denoted ϕ(n/k) and is called the Euler phi function. We discussed how to compute
it in Exercise 4.1.5 (p. 100).

(c) Conclude that

ZCn
=

1

n

∑

ϕ(n/k)zk
n/k =

1

n

∑

ϕ(k)z
n/k
k ,

where the sum ranges over all integers between 1 and n inclusive that divide n.

11.3.2. The following questions refer to the group of rotations of the cube.

(a) Compute the cycle index of the group acting on the edges of the cube.

(b) Compute the cycle index of the group acting on the vertices of the cube.

(c) Imagine three perpendicular axes drawn through the center of the cube joining the centers of
faces. Label the axes x, y and z, but do not distinguish a direction on the axes—thus the axes
are simply lines. Compute the cycle index of the group acting on these axes.

(d) Repeat the previous question where a direction is assigned to each of the axes. Reversal of the
direction of an axis is indicated by a minus sign; e.g., a rotation that reverses the z-axis and
interchanges the x-axis and y-axis is written in cycle notation as

(x, y)(−x,−y)(z,−z).
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11.3.3. The regular octahedron consists of eight equilateral triangles joined together so that the result looks
like two pyramids joined base to base. A regular octahedron can be obtained by placing a vertex in
each face of a cube and joining two vertices if they lie in faces which are separated by an edge.

(a) There is a duality between a regular octahedron and a cube in which faces correspond to vertices,
edges to edges and vertices to faces. Obtain this correspondence.

(b) Write down the cycle index for the group of symmetries of the regular octahedron (reflections
allowed or not) acting on the vertices of the regular octahedron.
Hint. This requires no calculation on your part.

(c) Do the same for the rotations of the octahedron acting on the edges.

11.3.4. Write down the cycle index for the group of rotations of the regular tetrahedron acting simultaneously
on the vertices, edges and faces. Instead of the usual xi, use vi, ei and fi, indicating whether it is an

orbit of vertices, faces or edges. For example, the identity rotation gives the term v4
1e6

1f4
1 . Explain

how to use this result to obtain the cycle index for the group acting on just the edges.

11.3.5. Write down the cycle index polynomial for all permutations of 4 and use this to write down
the ordinary generating function D4(y) for simple unlabeled 4-vertex digraphs by number of
edges.

11.3.6. Repeat the previous exercise with “4” replaced by “5.” You may find Exercises 2.2.5 and 2.3.3 (p. 57)
helpful.

*11.3.7. State and prove a theorem like Theorem 11.9 for unlabeled n-vertex simple (loopless) graphs.
Hint. You will need to distinguish two cases depending on whether or not u and v are in the same
cycle of g acting on n.

11.4 Asymptotic Estimates

The area of asymptotics deals with obtaining estimates for functions for large values of the variables
and, sometimes, for values near zero. Since the domain of the functions we’re concerned with is the
positive integers, these functions can be thought of as sequences a1, a2, . . .. Since this section uses
the terminology introduced in Appendix B, you may want to review it at this time.

A solid mathematical treatment of asymptotics requires more background than we are willing
to assume and developing the background would take too much time. Therefore, the material in
this section is not rigorous. Instead, we present several principles which indicate what the result will
almost certainly be in common combinatorial situations. The intent of this section is to give you a
feeling for the subject, some direction for future study and some useful rules of thumb.

Before launching into specific tools and examples, we’d like to set the stage a bit since you are
probably unfamiliar with asymptotic estimates. The lack of specific examples may make some of
this introductory material a bit vague, so you may want to reread it after completing the various
subsections.

Suppose we are interested in a sequence of numbers. We have four methods of providing asymp-
totic information about the numbers. Here they are, with examples:

• A combinatorial description: say Bn is the number of partitions of an n-set;

• A recursion: F0 = 1, F1 = 2 and Fn = Fn−1 + Fn−2 for n ≥ 2;

• A formula: the number of involutions of an n-set is
n
∑

j=0

n!

j! 2j(n − 2j)!
;

the number of unlabeled full binary RP-trees with n leaves is 1
n

(

2n−2
n−1

)

;
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• A generating function: the ordinary generating function for the number of comparisons needed
to Quicksort an n long list is

−2 ln(1 − x) − 2x

(1 − x)2
;

the ordinary generating function for the number of unlabeled rooted full binary trees by number
of leaves satisfies

T (x) =
T (x)2 + T (x2)

2
+ x.

Given such information, can we obtain some information about the size of the terms in the sequence?
The answer will, of course, depend on the information we are given. Here is a quick run down on
the answers.

• A combinatorial description: It is usually difficult, if not impossible, to obtain information directly
from such a description.

• A recursion: It is often possible to obtain some information. We will briefly discuss a simple
case.

• A formula: The formula by itself may be explicit enough. If it is not, using Stirling’s formula may
suffice. If a summation is present, it can probably be estimated if all its terms are nonnegative,
but it may be difficult or impossible to estimate a sum whose terms alternate in sign. Unfortu-
nately, the estimation procedures usually involve a fair bit of messy calculation and estimation.
We will discuss two common types of sums.

• A generating function: If the generating function converges for some values of x other than
x = 0, it is quite likely that estimates for the coefficients can be obtained by using tools from
analysis. Tools have been developed that can be applied fairly easily to some common situations,
but rigorous application requires a background in complex analysis. The main emphasis of this
section is the discussion of some simple tools for generating functions.

You may have noticed that we have discussed only singly indexed sequences in our examples.
There are fewer tools available for multiply indexed sequences and they are generally harder to
describe and to use. Therefore, we limit our attention to singly indexed sequences.

There is no single right answer to the problem of this section—finding simple approximations
to some an for large n—we must first ask how simple and how accurate.

We will not try to specify what constitutes a simple expression; however, you should have
some feel for it. For example, an expression of the form anbnc, where a, b and c are constants, is

simple. The expression
√

2πn(n/e)n is simpler than the expression n! even though the latter is more
easily written down. Why? If we limit ourselves to the basic operations of addition, subtraction
multiplication, division and exponentiation, then the former expression requires only six operations
while n! requires n − 1 multiplications. We have hidden the work of multiplication by the use of a
function, namely the factorial function. We can estimate simplicity by counting the number of basic
operations.

There are wide variations in the degree of accuracy that we might ask for. Generally speaking,
we would like an approximating expression whose relative error goes to zero. In other words, given
an, we would like to find a simple expression f(n) such that an/f(n) → 1 as n → ∞. In this case
we say that an is asymptotic to f(n) and write an ∼ f(n). Sometimes greater accuracy is desired—a
problem we will not deal with. Sometimes we may have to settle for less accuracy—a situation we
will be faced with.

The discussion of accuracy in the previous paragraph is a bit deceptive. What does an ∼ f(n)
tell us about specific values? Nothing! It says that eventually an/f(n) gets as close to 1 as we may
desire, but eventually can be a very long time. But, in most cases of interest, we are lucky enough
that the ratio an/f(n) approaches 1 fairly quickly. Can we be more precise?
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It is possible in most cases to compute an upper bound on how slowly an/f(n) approaches 1;
that is upper bounds on |an/f(n) − 1| as a function of n. Obtaining such bounds often involves
a considerable amount of work and is beyond the scope of this text. Even if one has a bound it
may be unduly pessimistic—the ratio may approach one much faster than the bound says. A more
pragmatic approach is to compute an/f(n) for small values of n and hope that the trend continues
for larger values. Although far from rigorous, this pragmatic approach almost always works well in
practice. We’ll carry out such calculations for the problems studied in this section.

The following subsections are independent of each other. If you are only going to read one of
them, we recommend the one on generating functions.

Recursions

We have been able to solve the simplest sorts of recursions in earlier sections. Now our interest
is different—we want asymptotic information from the recursions. We will consider two types of
linear recursions that arise frequently in the analysis of algorithms. A linear recursion for an is an
expression of the form

an = c1(n)an−1 + c2(n)an−2 + . . . + cn(n)a0 + f(n)

for n ≥ N . If f(n) = 0 for n ≥ N , the recursion is called homogeneous.

We first discuss homogeneous recursions whose coefficients are “almost constant.” In other words,
except for initial conditions,

an = c1(n)an−1 + c2(n)an−2 + . . . + ck(n)an−k, 11.33

where the functions ci(n) are nearly constant. If ci(n) is nearly equal to Ci, then the solution to

An = C1An−1 + C2An−2 + . . . + CkAn−k, 11.34

with initial conditions, should be reasonably close to the sequence an. We will not bother to discuss
what reasonably close means here. It is possible to say something about it, but the subject is not
simple.

What can we say about the solution to (11.34)? Without the initial conditions, we cannot say
very much with certainty; however, the following is usually true.

Principle 11.1 Constant coefficient recursions Let r be the largest root of the equation

rk = C1r
k−1 + C2r

k−2 + . . . + Ckr0. 11.35

If this root occurs with multiplicity m, then there is usually a constant A such that the solution
to (11.34) that satisfies our (unspecified) initial conditions is asymptotic to Anm−1rn.

This result is not too difficult to prove. Given the initial conditions, one can imagine using (11.34)
to obtain a rational function for

∑

n Anxn. The denominator of the rational function will be p(x) =

1 − (C1x + . . . + Ckxk). Now imagine expanding the result in partial fractions. The reason for the
lack of a guarantee in the principle is that a factor may cancel from the numerator and denominator
of
∑

n Anxn, giving a lower degree polynomial than p(x).

The principle is perhaps not so interesting because it gives much less accurate results than those
obtained by using generating functions and partial fractions. Its only attractions are that it requires
less work and gives us an idea of what to expect for (11.33).
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Principle 11.2 Linear recursions Suppose that ci(n) → Ci as n → ∞ and that at least

one Ci is nonzero. Let r be the largest root of (11.35). Then rn is probably a fairly reason-

able crude approximation to the solution an of (11.33) that satisfies our (unspecified) initial

conditions. Usually

lim
n→∞

(an)1/n = r.

Example 11.22 Involutions Let an be the number of permutations of n which are involutions,

that is, no cycle lengths exceed two. Either n is in a cycle with itself OR it forms a cycle with one

of the remaining n − 1 elements of n. Thus

an = an−1 + (n − 1)an−2,

with some appropriate initial conditions.

The coefficients of this recursion are not almost constant, but we can use a trick, which works

whenever we have coefficients which are polynomials in n. Let bn = an/(n!)d, where d is to be

determined. Dividing our recursion by (n!)d, and doing a little simple algebra, we have

bn =
1

nd
bn−1 +

n − 1

(n2 − n)d
bn−2.

If d < 1/2, the last coefficient is unbounded, while if d > 1/2, both coefficients on the right side

approach 0. On the other hand, with d = 1/2, the first coefficient approaches 0 and the second

approaches 1. Thus we are led to consider the recursion bn = bn−2 and hence the roots of the

polynomial r2 = 1. Since the largest is r = 1, we expect that bn should approach 1. Thus (n!)1/2 is a

rough approximation to an. We can eliminate the factorial by using Stirling’s formula (Theorem 1.5

(p. 12)). Since the approximation in Principle 11.2 is so crude we may as well ignore factors like√
2πn and simply say that an probably grows roughly like (n/e)n/2.

We now present a type of recursion that often arises in divide and conquer problems such as

Mergesort. Some authors have called various forms of the theorem associated with this principle a

master theorem for recursions. The reason we have put “function” in quotes is explained after the

principle.

Principle 11.3 Master Principle for Recursions We want to study the “function” T (n).

Suppose that for some “functions” f(n), s1(n), . . . , sw(n), some N , and some 0 < c < 1 we have

(i) T (n) > 0 for n ≥ N ,

(ii) f(n) ≥ 0 for n ≥ N ,

(iii) si(n) − cn ∈ O(1) for 1 ≤ i ≤ w,

(iv) T (n) = f(n) + T (s1(n)) + T (s2(n)) + · · · + T (sw(n)).

Let b = log w/ log(1/c). Then

(a) if f(n)/nb → ∞ as n → ∞, then we usually have T (n) ∈ Θ(nb);

(b) if f(n)/nb → 0 as n → ∞, then we usually have T (n) ∈ Θ(f(n));

(c) if nb ∈ Θ(f(n)), then we usually have T (n) ∈ Θ(nb log n).
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The principle says that T (n) grows like the faster growing of f(n) and nb unless they grow at the
same rate, in which case T (n) grows faster by a factor of log n.

Why is “function” in quotes? Consider merge sorting. We would like T (n) to be the number of
comparisons needed to merge sort an n-long list. This is not a well-defined function! The number
depends on the order of the items in the original list. (See Example 7.13 (p. 211).) Thus, we want
to let T (n) stand for the set of all possible values for the number of comparisons that are required.
Hence T (n) is really a collection of functions. Similarly f(n) and, more rarely, the si(n) may be
collections of functions. Thus, a statement like T (n) ∈ Θ(f(n)) should be interpreted as meaning
that the statement is true for all possible values of T (n) and f(n).

Example 11.23 Recursive multiplication of polynomials Suppose we want to multiply
two polynomials of degree at most n, say

P (x) = p0 + p1x + · · · + pnxn and Q(x) = q0 + q1x + · · · + qnxn.

A common method for doing this is to use the distributive law to generate (n + 1)2 products p0q0,
p0q1x, p0q2x

2, . . ., pnqnx2n and then collect the terms that have the same powers of x. This involves
(n + 1)2 multiplications of coefficients and, it can be shown, n2 additions of coefficients. Thus, the
amount of work is Θ(n2).

Is this the best we can do? Of course, we can do better if P (x) or Q(x) have some coefficients
that are zero. Since we’re concerned with finding a general algorithm, we’ll ignore this possibility.
There is a recursive algorithm which is faster. It uses the following identity, which you should check

Identity: If PL(x), PH(x), QL(x) and QH(x) are polynomials, then
(

PL(x) + PH(x)xm
)(

QL(x) + QH(x)xm
)

= A(x) +
(

C(x) − A(x) − B(x)
)

xm + B(x)x2m

where
A(x) = PL(x)QL(x), B(x) = PH(x)QH(x),

and
C(x) =

(

PL(x) + PH(x)
)(

QL(x) + QH(x)
)

.

We can think of this identity as telling us how to multiply two polynomials P (x) and Q(x) by
splitting them into lower degree terms (the polynomials PL(x) and QL(x)) and higher degree terms
(the polynomials PH(x)xm and QH(x)):

P (x) = PL(x) + PH(x)xm and Q(x) = QL(x) + QH(x)xm.

The identity requires three polynomial multiplications to compute A(x), B(x) and C(x). Since
the degrees involved are only about half the degrees of the original polynomials, we’ve gone from
about n2 multiplications to about 3(n/2)2 = 3n2/4, an improvement by a constant factor as n → ∞.
When this happens, applying an algorithm recursively usually gives an improvement in the exponent.
In this case, we expect Θ(nd) for some d < 2 instead of n2.

Here’s a recursive algorithm for multiplying two polynomials P (x) = p0 + p1x · · · + pnxn and
Q(x) = q0 + q1x + · · · + qnxn of degree at most n.

MULT(P (x), Q(x), n)
If (n=0) Return p0q0

Else

Let m = n/2 rounded up.

PL(x) = p0 + p1x + · · · pm−1x
m−1

PH(x) = pm + pm+1x + · · · pnxn−m

QL(x) = q0 + p1x + · · · qm−1x
m−1

QH(x) = qm + qm+1x + · · · qnxn−m
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A(x) = MULT
(

PL(x), QL(x), m − 1
)

B(x) = MULT
(

PH(x), QH(x), n − m
)

C(x) = MULT
(

PL(x) + PH(x), QL(x) + QH(x), n − m
)

D(x) = A(x) +
(

C(x) − A(x) − B(x)
)

xm + B(x)x2m

Return D(x)
End if

End

We store a polynomial as array of coefficients. The amount of work done in calculation is the
number of times we multiply or add two coefficients.

Let’s count multiplications. Since a polynomial of degree n has n + 1 coefficients (constant
term to coefficient of xn), we’ll denote by T (n + 1) the number of multiplications for a polynomial
of degree n. To multiply two constants, we have T (1) = 1. You should be able to show that the
recursive part of the algorithm gives us T (n) = T (m)+T (n−m)+T (n−m), where m = bn/2c, the
largest integer not exceeding n/2. The Master Principle applies with w = 3, f(n) = 0, s1(n) = bn/2c,
s2(n) = s3(n) = n−bn/2c = dn/2e1 and c = 1/2. Thus b = log 3/ log 2 and T (n) ∈ Θ(nlog 3/ log 2).
Since log 3/ log 2 is about 1.6 which is less than 2, this is less work than the n2 multiplications in
the common method when n is large.

What about additions and subtractions? The polynomials A(x), B(x) and C(x) all have degree
about n. Thus, computing C(x) − A(x) − B(x) requires about 2n subtractions. The polynomials
A(x) and (C(x)−A(x)−B(x))xm overlap in about n/2 terms and so adding them together requires
about n/2 additions. Adding in B(x)x2m requires about n/2 more additions. Thus, there are about
3n additions and subtractions involved in computing D(x) from A, B and C. If U(n) is the number
of additions and subtractions in the recursive algorithm for polynomials of degree n − 1,

U(n) = f(n) + U(m) = U(n − m) + U(n − m) where f(n) ∈ Θ(3n).

By the Master Principle with b = log 3/ log 2, U(n) ∈ Θ(nb). Thus the algorithm requires

Θ(nlog 3/ log 2) multiplications, additions and subtractions.

Sums of Positive Terms

Suppose that

an =

Ln
∑

k=0

tn,k,

where tn,k > 0 and Ln → ∞. Imagine n fixed and think of tn,k as a sequence in k; i.e., tn,0,tn,1,
. . .. Let rk(n) = tn,k+1/tn,k, the ratio of consecutive terms. Usually we simply write rk for rk(n). In
practice we usually have one of four situations

(a) Decreasing terms (rk ≤ 1 for all k). We will study this.

(b) Increasing terms (rk ≥ 1 for all k) Convert to (a) by writing the sequence backwards:

an =

Ln
∑

k=0

tn,k =

Ln
∑

i=0

tn,Ln−i =

Ln
∑

k=0

sn,k,

(c) Increasing, then decreasing (rk ≤ 1 for k < Kn and rk ≥ 1 for k ≥ Kn): split the sum at
Kn. This gives one sum like (a) and one like (b):

an =

Ln
∑

k=0

tn,k =

Kn−1
∑

k=0

tn,k +

Mn
∑

k=0

un,k,

1 The ceiling function dxe is the least integer not exceeding x.
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where Mn = Ln − Kn and un,k = tn,k+Kn
.

(d) Decreasing, then increasing (rk ≥ 1 for k < Kn and rk ≤ 1 for k ≥ Kn: Split into two as

done for (c).

Suppose we are dealing with (a), decreasing terms, and that limn→∞ rk(n) = r exists for each

k and does not depend on k. This may sound unusual, but it is quite common. If r = 1, we will

call the terms slowly decreasing. If |r| < 1, we will call the terms rapidly decreasing. The two sums

obtained from Case (c) are almost always slowly decreasing and asymptotically the same.

Principle 11.4 Sums of rapidly decreasing terms If there is an r with 0 < r < 1

such that limn→∞ tn,k+1/tn,k = r for each value of k, then we usually have a geometric series

approximation:
Ln
∑

k=0

tn,k ∼
∑

k≥0

tn,0r
k
n ∼ tn,0

1 − r
. 11.36

(Note that r does not depend on k.)

Aside: Actually, there is a more general principle: If rk(n) → ρk as n → ∞ and there is an R < 1

such that |ρk| < R for all k, then the sum is asymptotic to tn,0

∑∞
i=0 ρ1 · · · ρi. Principle 11.4 is the

special case ρi = r for all i.

Example 11.24 Small subsets How many subsets of an n-set have at most cn elements where

c < 1/2? You should have no trouble seeing that the answer is

bcnc
∑

k=0

(

n

k

)

,

where bcnc is the largest integer that does not exceed cn. Let’s approximate the sum. Since the

terms are increasing, we reverse the order:

bcnc
∑

k=0

(

n

bcnc − k

)

.

We have

tn,k+1

tn,k
=

(

n
bcnc−k−1

)

(

n
bcnc−k

) =
bcnc − k

n − bcnc + k + 1
.

When k is small compared to n, this ratio is close to c/(1 − c) and so, by Principle 11.4, we expect

bcnc
∑

k=0

(

n

k

)

∼
(

n
bcnc

)

1 − (c/(1 − c))
=

1 − c

1 − 2c

(

n

bcnc

)

. 11.37

A table comparing exact and approximate values is given in Figure 11.2.

We now look at sums with slowly decreasing terms. Such sums can usually be done by inter-

preting the sum as an approximation to a Riemann sum associated with an integral. We’ll merely

state the result for the most common case.
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c n 10 20 50 100 200

A 11.25 213.75 2.384 × 106 1.947 × 1013 1.815 × 1027

0.1 E 11 211 2.370 × 106 1.942 × 1013 1.813 × 1027

A/E 1.023 1.01 1.006 1.003 1.002

A 60 6460 1.370 × 1010 7.146 × 1020 2.734 × 1042

0.2 E 56 6196 1.343 × 1012 7.073 × 1020 2.719 × 1042

A/E 1.07 1.04 1.02 1.01 1.005

A 630 377910 1.414 × 1014 4.124 × 1028 4.942 × 1057

0.4 E 386 263950 1.141 × 1014 3.606 × 1028 4.568 × 1057

A/E 1.6 1.4 1.2 1.14 1.08

Figure 11.2 The exact values (E) and approximate values (A) of the sum in (11.37) for c = 0.1, 0.2, 0.4
and n = 10, 20, 40, 100, 200. The ratios A/E are also given.

Principle 11.5 Sums of slowly decreasing terms Let rk(n) = tn,k+1/tn,k and suppose
limn→∞ rk(n) = 1 for all k. Suppose there is a function f(n) > 0 with limn→∞ f(n) = 0 such
that, for all “fairly large” k, (1 − rk(n))/k ∼ f(n) as n → ∞. Then we usually have

∑

k≥0

tn,k ∼
√

π

2f(n)
tn,0. 11.38

If the terms in the sum first increase and then decrease and the preceding applies to one half of
the sum, then the answer in (11.38) should be doubled.

“Fairly large” means that k is small compared to n but that k is large compared with constants. For
example, (k − 1)/kn can be replaced by 1/n.

Example 11.25 Subsets of equal size Suppose j is constant. How many ways can we choose
j distinct subsets of n all of the same size? Since there are

(

n
k

)

subsets of size k, you should have no
trouble seeing that the answer is

n
∑

k=0

(
(

n
k

)

j

)

.

Since the binomial coefficients
(

n
k

)

increase to a maximum at k = bn/2c and then decrease, the same

is true for the terms in the sum. Thus we are in Case (c). We can take Kn = bn/2c and we expect
(11.38) to apply.

For simplicity, let’s treat n as if it is even. The second half of the sum is

n/2
∑

k=0

(
(

n
k+n/2

)

j

)

and so

rk =

(
(

n
k+1+n/2

)

j

)

/

(
(

n
k+n/2

)

j

)

≈
(( n

k+1+n/2

)

(

n
k+n/2

)

)j

=

(

n − k − n/2

k + 1 + n/2

)j

≈
(

1 − 2k/n

1 + 2k/n

)j

≈ e−4jk/n ≈ 1 − 4jk/n,
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where the last approximations come from using 1+x ≈ ex as x → 0, first with x = ±2k/n and then
with x = 4jk/n. Thus (1 − rk)/k ≈ 4j/n. So we take f(n) = 4j/n in Principle 11.5. Remembering
that we need to double (11.38), we expect that

n
∑

k=0

(
(

n
k

)

j

)

∼ 2

√

πn

8j

(
(

n
bn/2c

)

j

)

∼
√

πn

2j

(

n
bn/2c

)j

j!
.

This is correct.

Example 11.26 Involutions In Theorem 2.2 (p. 48), we showed that the number of involutions
of n is

In =

bn/2c
∑

k=0

n!

(n − 2k)!2kk!
.

It is not obvious where the maximum term is; however, we can find it by solving the equation
tn,k+1/tn,k = 1 for k. We have

tn,k+1

tn,k
=

(n − 2k)(n − 2k − 1)

2(k + 1)
= 1. 11.39

Clearing fractions in the right hand equation leads to a quadratic equation for k whose solution is
close to m = (n−√

n)/2. For simplicity, we assume that m is an integer. Since the maximum is not
at the end, we expect to apply Principle 11.5. We split the sum into two pieces at m, one of which is

√
n

∑

k=0

n!

(n − 2m − 2k)!2m+k(m + k)!
.

Adjusting (11.39) for this new index, we have

rk(n) =
tn,k+1

tn,k
≈ (

√
n − 2k)2

n −√
n + 2k

.

After some approximations and other calculations, we find that rk ≈ 1− (4k− 1)/
√

n. Thus f(n) ∼
4/

√
n and so, doubling (11.38), we expect

In ∼ 2
√

π/8 n1/4 n!

(
√

n)! 2(n−√
n)/2

(

(n −√
n)/2

)

!
.

If you wish, you can approximate this by using Stirling’s formula. After some calculation, we obtain

In ∼ nn/2

√
2 en/2−√

n+1/4
. 11.40

This is correct. Here is a comparison of values.

n 5 20 50 100 200

(11.40) 23.6 2.241 × 1010 2.684 × 1034 2.340 × 1082 3.600 × 10192

In 26 2.376 × 1010 2.789 × 1034 2.405 × 1082 3.672 × 10192

ratio 0.91 0.94 0.96 0.97 0.98

The convergence is not very fast. It can be improved by making a more refined asymptotic estimate,
which we will not do.
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Example 11.27 Set partitions We proved in Theorem 11.3 (p. 320) that the number of parti-
tions of an n-set equals

Bn =
1

e

∞
∑

k=0

kn

k!
. 11.41

We’ll use Principle 11.5 (p. 346). Taking ratios to find the maximum term:

tn,k+1

tn,k
=

(1 + 1/k)n

k + 1
≈ en/k

k
.

The approximation comes from 1 + 1/k = exp(ln(1 + 1/k)) ≈ e1/k. We want en/k/k = 1. Taking
logarithms, multiplying by k, and rearranging gives k ln k = n. Let s be the solution to s ln s = n.
We split the sum at bsc. It is convenient (and does not affect the answer) to treat s as if it is an
integer.

Unfortunately, the next calculations are quite involved. You may want to skip to the end of the
paragraph. We now have a sum that starts at s and so, adjusting for shift of index,

rk(n) =
(1 + 1/(s + k))n

s + k + 1
≈ en/(s+k)

s + k
=

es ln s/(s+k)

s + k
.

Since 1
1+x ≈ 1 − x for small x and since s is large, we have s

s+k = 1
1+k/s ≈ 1 − k/s. Using this in

our estimate for rk(n):

rk(n) ≈ e(1−k/s) ln s

s + k
=

se−(k ln s)/s

s + k
≈
(

1 − k

s

)(

1 − k ln s

s

)

,

where we have used 1
1+x ≈ 1 − x again and also e−x ≈ 1 − x for small x. When x and y are small,

(1−x)(1−y) ≈ 1−(x+y). In this case, x = k/s is much smaller than y = k(ln s)/s so that x+y ≈ y
and so we finally have

rk(n) ≈ 1 − k ln s

s

and so f(n) = (ln s)/s.
Remembering to double and to include the factor of 1/e from (11.41), we have (using Stirling’s

formula on s!)

Bn ∼
√

2πs/ ln s sn

e s!
∼ sn−ses−1

√
ln s

, where s ln s = n defines s. 11.42

Here’s how (11.42) compares with the exact values.

n 5 20 50 100 200

s 3.76868 9.0703 17.4771 29.5366 50.8939

(11.42) 70.88 6.305 × 1013 2.170 × 1047 5.433 × 10115 7.010 × 10275

Bn 52 5.172 × 1013 1.857 × 1047 4.759 × 10115 6.247 × 10275

ratio 1.36 1.22 1.17 1.14 1.22
better 1.03 1.01 1.005 1.003 1.002

The approximation is quite poor. Had we used the factor of
√

1 + ln s in the denominator of (11.42),
the relative error would have been much better, as shown in the last line of the table. How did we

obtain the formula with
√

1 + ln s ? After obtaining the form with
√

ln s and noting how poor the
estimate was, we decided to look for a correction by trial and error. Often, a good way to do this is
by adjusting in a simple manner the part of the estimate that contains the smallest function of n—in
this case, the function ln s. We tried C +ln s and found that C = 1 gave quite accurate estimates.
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Generating Functions

In order to study asymptotic estimates from generating functions, it is necessary to know something
about singularities of functions. Essentially, a singularity is a point where the function misbehaves
in some fashion. The singularities that are encountered in combinatorial problems are nearly all due
to either

• attempting to take the logarithm of zero,

• attempting to raise zero to a power which is not a positive integer,

or both. For example, − ln(1 − x) has a singularity at x = 1. The power of zero requires a bit of
explanation. It includes the obviously bad situation of attempting to divide by zero; however, it
also includes things like attempting to take the square root of zero. For example,

√
1 − 4x has a

singularity at x = 1/4. To explain why a nonintegral power of zero is bad would take us too far
afield. Suffice it to say that the fact that A has two square roots everywhere except at A = 0 is
closely related to this problem.

The following is stated as a principle because we need to be more careful about the conditions in
order to have a theorem. For combinatorial problems, you can expect the more technical conditions
to be satisfied.

Principle 11.6 Nice singularities Let an be a sequence whose terms are positive for all
sufficiently large n. Suppose that A(x) =

∑

n anxn converges for some value of x > 0. Suppose
that A(x) = f(x)g(x) + h(x) where

• f(x) =
(

− ln(1 − x/r)
)b

(1 − x/r)c, c is not a positive integer and we do not have b = c = 0;

• A(x) does not have a singularity for −r ≤ x < r;

• limx→r g(x) exists and is nonzero (call it L);

• h(x) does not have a singularity at x = r.

Then it is usually true that

an ∼



















L(lnn)b(1/r)n

nc+1Γ(−c)
, if c 6= 0;

bL(lnn)b−1(1/r)n

n
, if c = 0;

11.43

where Γ is the Gamma function which we describe below.

The value of r can be found by looking for the smallest (positive) singularity of A(x). Often g(r) is
defined and then g(r) = L. Since, in many cases there is no logarithm term (and so b = 0), you may
find it helpful to rewrite the principle for the special case b = 0.

The values of the Gamma function Γ(x) can be looked up in tables. In practice, the only
information you are likely to need about this function is

Γ(k) = (k − 1)! when k > 0 is an integer, Γ(x + 1) = xΓ(x) and Γ(1/2) =
√

π.

For example, we compute Γ(−1/2) by using Γ(1/2) = (−1/2)Γ(−1/2):

Γ(−1/2) = −2Γ(1/2) = −2
√

π.

We begin with a couple of simple examples.
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Example 11.28 Derangements Let Dn be the number of permutations of n that have no fixed
points. We showed in (11.17) that

∞
∑

n=0

Dnxn

n!
=

e−x

1 − x
.

We apply Principle 11.6 with this as A(x). There is a singularity at x = 1 because we are then
dividing by zero. Thus r = 1 and we have

A(x) = (1 − x)−1e−x + 0, so f(x) = (1 − x)−1, g(x) = e−x, and h(x) = 0.

Thus b = 0 and c = −1. Since g(1) = 1/e, we have Dn/n! ∼ 1/e. In Example 4.5 (p. 99) we used an
explicit formula for Dn to show that Dn is the closest integer to n!/e. We get no such error estimate
with this approach.

Example 11.29 Rational generating functions Suppose that A(x) =
∑

n anxn = p(x)/q(x)
where an ≥ 0 and p(x) and q(x) are polynomials such that

• r is the smallest zero of q(x); that is, q(r) = 0 and q(s) 6= 0 if 0 < s < r;

• the multiplicity of r as a zero is k; that is, q(x) = s(x)(1−x/r)k where s(x) is a polynomial and
s(r) 6= 0;

• p(r) 6= 0;

We can apply Principle 11.6 with f(x) = (1− x/r)−k and g(x) = p(x)/s(x). Since r is a zero of
q(x) of multiplicity k, it follows that this gives an asymptotic formula for an:

an ∼ p(r)nk−1(1/r)n

s(r) (k − 1)!
. 11.44

We leave it to you to apply this formula to various rational generating functions that have appeared
in the text.

Example 11.30 The average time for Quicksort Let qn be the average number of compar-
isons that are needed to Quicksort n long lists. In Example 10.12 (p. 289) we obtained the ordinary
generating function

Q(x) =
−2 ln(1 − x) − 2x

(1 − x)2
.

We can take A(x) = Q(x), r = 1, f(x) = − ln(1− x) (1− x)−2 and g(x) = 2 +
(

2x/ ln(1− x)
)

. Then
limx→1 g(x) = 2. From (11.43),

qn ∼ 2

(

n + 1

n

)

lnn ∼ 2n lnn, 11.45

which we also obtained in (10.30) by manipulating an explicit expression for qn. Here are some
numerical results.

n 5 20 50 100 1000

(11.45) 16.09 119.8 391.2 921.0 13816.
qn 7.4 71.11 258.9 647.9 10986.

ratio 2.2 1.7 1.5 1.4 1.3

The approximation converges very slowly. You might like to experiment with adjusting (11.45) to
improve the estimate.

An alternative approach is to write Q(x) as a difference of two functions and deal with each
separately: Q(x) = Q1(x) − Q2(x) where

Q1(x) =
−2 ln(1 − x)

(1 − x)2
and Q2(x) =

2x

(1 − x)2
.
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Now f1(x) = − ln(1− x)(1− x)−2, f2(x) = (1− x)−2, g1(x) = 2, g2(x) = 2x and h1(x) = h2(x) = 0.
We obtain q1,n ∼ 2n lnn as before and q2,n ∼ 2n. Subtracting we again obtain qn ∼ 2n lnn.

So far we have dealt with generating functions that required relatively little algebra to obtain
the asymptotics. We now look at a more complicated situation.

Example 11.31 Binary operations In Example 11.3 (p. 312) we studied zn, the number of
ways a string of n zeroes can be parenthesized to give zero, and obtained the ordinary generating
function

Z(x) =
T (x) − 1 +

√

(

1 − T (x)
)2

+ 4x

2
,

where

T (x) =
1 −

√
1 − 4x

2

is the ordinary generating function for all ways to parenthesize the string. (See (11.12) and (11.14).)
To gear up for studying Z(x), we begin with the simple T (x). Of course, T (x) could easily be

studied by using the explicit formula for its coefficients, tn = 1
n

(

2n−2
n−1

)

; however, the point is to

understand how to handle the square root singularity. The square root has a singularity at r = 1/4
since it vanishes there. Thus we write

T (x) = f(x)g(x) + h(x), where f(x) = (1 − x/r)1/2, g(x) = −1/2 and h(x)=1/2.

From (11.43) we obtain

tn = an ∼ (−1/2)

(

n − 3/2

n

)

(1/4)−n

∼ (−1/2)
(

n−3/2/Γ(−1/2)
)

4n =
4n−1

√
π n3/2

,

11.46

since (−1/2)Γ(−1/2) = Γ(1/2) =
√

π.

We’re ready for Z(x). Since r = 1/4 is a singularity of T (x), it is also a singularity of Z(x). We
can have other singularities when the complicates square root is zero; that is, (1 − T (x)2) + 4x = 0.
We have

(1 − T (x))2 + 4x =
1 + 2

√
1 − 4x + (1 − 4x)

4
+ 4x =

1 + 6x +
√

1 − 4x

2
.

For this to be zero we must have
1 + 6x = −

√
1 − 4x. 11.47

Squaring: 1+12x+36x2 = 1−4x and so 16x+36x2 = 0. The two solutions are x = 0 and x = −4/9.
Since squaring can introduce false solutions, so we’ll have to check them in (11.47). The value x = 0
is not a solution to (11.47) and the value x = −4/9 is irrelevant since it does not lie in the interval
[−1/4, 1/4]. Thus r = 1/4.

How can we find f , g and h? It seems likely that f(x) =
√

1 − 4x since we have T (x) present in
the numerator of Z(x). Then Z(r) = f(r)g(r) + h(r) = h(r) since f(1/4) = 0. We could simply try

to let h(x) be the constant Z(r), which is (−1 +
√

5 )/4. Thus we have

f(x) =
√

1 − 4x, h(x) = Z(1/4) =

√
5 − 1

4
, g(x) =

Z(x) − Z(1/4)√
1 − 4x

.

We need to find L. To simplify expressions, let s =
√

1 − 4x. We have

L = lim
x→1/4

(

−s +
√

(1 + s)2 + 16x −
√

5

4s

)

. 11.48
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n 5 10 20 30 40 50

(11.46) 12.92 4676. 1.734 × 109 9.897 × 1014 6.740 × 1020 5.057 × 1026

tn 14 4862 1.767 × 109 1.002 × 1015 6.804 × 1020 5.096 × 1026

t ratio 0.92 0.96 0.98 0.987 0.991 0.992

(11.49) 3.571 1293. 4.792 × 108 2.735 × 1014 1.863 × 1020 1.398 × 1026

zn 5 1381 4.980 × 108 2.806 × 1014 1.899 × 1020 1.419 × 1026

z ratio 0.7 0.94 0.96 0.97 0.98 0.985

zn/tn 0.36 0.284 0.282 0.280 0.279 0.279

Figure 11.3 Asymptotic and exact values for tn and zn in Example 11.31. The ratios of asymptotic to

exact values are given and the ratio zn/tn, which we have shown should approach (5−
√

5)/10 = 0.276393.

How can we evaluate the limit? Since numerator and denominator approach zero, we can apply

l’Hôpital’s Rule (a proof can be found in any rigorous calculus text):

Theorem 11.10 l’Hôpital’s Rule Suppose that limx→a f(x) = 0, limx→a g(x) = 0, and

g(x) 6= 0 when 0 < |x − a| < δ for some δ > 0. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the latter limit exists.

We leave it to you to apply l’Hôpital’s Rule and some algebra to evaluate the limit. We’ll use a

trick—rewrite everything in terms of s and then use l’Hôpital’s Rule:

L = lim
s→0

(

−s +
√

(1 + s)2 − 4(s2 − 1) −
√

5

4s

)

by algebra

= lim
s→0

(

−s +
√

5 + 2s − 3s2 −
√

5

4s

)

by algebra

= lim
s→0

(−1 + (1/2)(5 + 2s − 3s2)−1/2(2 − 6s)

4

)

by l’Hôpital’s Rule

=
−1 + 5−1/2

4
= − 5 −

√
5

20
.

We finally have

zn ∼ −5 −
√

5

20

(

n − 3/2

n

)

(1/4)−n ∼ 5 −
√

5

10

4n−1

√
π n3/2

. 11.49

Comparing the result with the asymptotic formula for tn, the total number of ways to parenthesize

the sequence 0 ∧ . . . ∧ 0, we see that the fraction of parenthesizations that lead to a value of zero

approaches (5 −
√

5)/10 as n → ∞. Various comparisons are shown in Figure 11.3.
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Example 11.32 Three misfits Although Principle 11.6 applies to many situations of interest
in combinatorics, there are also many cases where it fails to apply. Here are three examples.

• No singularities: The EGF for the number of involutions of n is exp(x + x2/2). This function
has no singularities, so our principle fails.

• Zero radius of convergence: The number of simple graphs with vertex set n is gn = 2N where
N =

(

n
2

)

. By the Exponential Formula (Theorem 11.5 (p. 321)), the EGF for the number of

connected graphs is ln(G(x)), where G(x) is the EGF for gn. Unfortunately, G(x) only converges
at x = 0 so our principle fails.

• Bad singularities: Let p(n) be the number of partitions of the integer n. At the end of Exam-
ple 10.15 (p. 295) we showed that the ordinary generating function for p(n) is

P (x) =
∞
∏

i=1

(1 − xi)−1.

Clearly r = 1. Unfortunately, for every real number c, P (x)/(1 − x)c → ∞ as x → 1. Thus our
principle does not apply; however, asymptotic information about p(n) can be deduced from the
formula for P (x). The methods are beyond this text. (Actually, P (x) behaves even worse than
we indicated—it has a singularity for all x on the unit circle.)

So far we have dealt with generating functions that are given by an explicit formula. This does
not always happen. For example, the ordinary generating function for rooted unlabeled full binary
trees by number of leaves is given implicitly by

T (x) =
T (x)2 + T (x2)

2
+ x.

Although any specific tn can be found, there is no known way to solve for the function T (x). The
following principle helps with many such situations. Unfortunately, the validity of its conclusion is
a bit shakier than (11.43).

Principle 11.7 Implicit functions Let an be a sequence whose terms are positive for all
sufficiently large n. Let A(x) be the ordinary generating function for the an’s. Suppose that the
function F (x, y) is such that F (x, A(x)) = 0. If there are positive real numbers r and s such
that F (r, s) = 0 and Fy(r, s) = 0 and if r is the smallest such r, then it is usually true that

an ∼
√

rFx(r, s)

2πFyy(r, s)
n−3/2r−n. 11.50

Example 11.33 RP-trees with degree restrictions Let D be a set of nonnegative integers
that contains 0. In Exercise 10.4.11 (p. 301), we said an RP-tree was of outdegree D if the number of
sons of each vertex lies in D. Let TD(x) be the ordinary generating function for unlabeled RP-trees
of outdegree D by number of vertices. In Exercise 10.4.11, you were asked to show that

TD(x) = x
∑

d∈D

TD(x)d.

It can be shown that tD(n) > 0 for all sufficiently large n if and only if

gcd{d − 1 : d ∈ D} = 1.

We invite you to prove this by looking at the equation for g(x) = TD(x)/x and using the fact that all
sufficiently large multiples of the gcd of a set S can be expressed as a nonnegative linear combination
of the elements of S.
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Let F (x, y) = y − x
∑

d∈D yd. Then r and s in Principle 11.7 are found by solving the equations

s − r
∑

d∈D

sd = 0,

1 − r
∑

d∈D

dsd−1 = 0.

With a bit of algebra, we can get an equation in s alone which can be solved numerically and then
used in a simple equation to find r:

1 =
∑

d∈D
d>0

(d − 1)sd, 11.51

r =

(

∑

d∈D

sd−1

)−1

. 11.52

Finally

rFx(r, s)

Fyy(r, s)
=

∑

d∈D sd

∑

d∈D d(d − 1)sd−2
. 11.53

Since the right side of (11.51) is a sum of positive terms, it is a simple matter to solve it for the
unique positive solution to any desired accuracy. This result can then be used in (11.52) to find r
accurately. Finally, the results can be used in (11.53) and (11.50) to estimate tD(n).

Example 11.34 Unlabeled rooted trees In (11.29) we showed that the generating function
by vertices for unlabeled rooted trees in which each vertex has outdegree at most three satisfies

T (x) = 1 + x
T (x)3 + 3T (x)T (x2) + 2T (x3)

6
. 11.54

Since T (x2) and T (x3) appear here, it does not seem possible to apply Principle 11.7. However,
it can be applied—we simply set

F (x, y) = 1 − y + x
y3 + 3T (x2)y + 2T (x3)

6
.

The reason why this is permitted is somewhat technical: The singularity r of T (x) turns out to lie
in (0, 1), which guarantees that x3 < x2 < x when x is near r. As a result T (x2) and T (x3) are not
near a singularity when x is near r.

Even if you did not fully follow the last part of the previous paragraph, you may have noticed
the claim that the singularity of T (x) lies in (0, 1). We should prove this, but we will not do so.
Instead we will be satisfied with noting that our calculations produce a value of r ∈ (0, 1)—a circular
argument since we needed that fact before beginning.

The equations for r and s are

1 − s + r
s3 + 3T (r2)s + 2T (r3)

6
= 0, 11.55

−1 + r
s2 + T (r2)

2
= 0. 11.56

We have a problem here: In order to compute r and s we need to be able to evaluate the function
T accurately and we lack an explicit formula for T (x). This can be gotten around as follows.

Suppose we want to know T (x) at some value of x = p ∈ (0, 1). If we knew the values of T (p2)
and T (p3), we could regard (11.54) as a cubic in the value of T (p) and solve it. On the other hand, if
we knew the values of T ((p2)2) and T ((p2)3), we could set x = p2 in (11.54) and solve the resulting
cubic for T (p2). On the surface, this does not seem to be getting us anywhere because we keep

needing to know T (pk) for higher and higher powers k. Actually, that is not what we need—we need
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to know T (pk) with some desired degree of accuracy. When k is large, pk is close to zero and so T (pk)
is close to T (0) = t0 = 1. (We remind you that when we derived (11.54) we chose to set t0 = 1.)
How large does k need to be for a given accuracy? We won’t go into that.

There is another trick that will simplify our work further. Since s = T (r), we can eliminate s

from (11.56) and so r
(

T (r)2 + T (r2)
)

= 1 is the equation for r. We can now use (11.55) to check for
errors in our calculations.

Once r and s have been found it is a fairly straightforward matter to apply (11.50). The only
issue that may cause some difficulty is the evaluation of

Fx(r, s) =
s3 + 3T (r2)s + 2T (r3)

6
+ r3T ′(r2)s + r3T ′(r3)

because of the presence of T ′. We can differentiate (11.54) with respect to x and solve the result for
T ′(x) in terms of x, T ′(x2), T ′(x3) and values of T . Using this recursively we can evaluate T ′ to any
desired degree of accuracy, much as we can T . After considerable calculation, we find that

tn ∼ (0.51788 . . .)n−3/2(0.3551817 . . .)−n 11.57

which can be proved. Since we have the results

n 5 10 20 30 40 50

(11.57) 8.2 512.5 5671108. 9.661 × 1010 1.964× 1015 4.398× 1019

tn 8 507 5622109 9.599 × 1010 1.954× 1015 4.380× 1019

ratio 1.02 1.01 1.009 1.006 1.005 1.004

the estimate is a good approximation even for small n.

Exercises

In this set of exercises, “estimate” always means asymptotically; i.e., for large n. Since you will be using the
various principles in the text, your results will only be what is probably true; however, the results obtained
will, in fact, be correct. Some problems ask you to use alternate methods to obtain asymptotic estimates.
We recommend that, after doing such a problem, you reflect on the amount of work each method requires
and the accuracy of the result it produced. In many of the exercises, enumeration formulas are given. You
need not derive them unless you are asked to do so.

11.4.1. A path enumeration problem leads to the recursion an = 2an−1 + an−2 for n ≥ 2 with initial
conditions a0 = 1 and a1 = 3.

(a) Estimate an directly from the recursion using Principle 11.1 (p. 341).

(b) Determine the ordinary generating function and use (11.44) to estimate an.

(c) Use the ordinary generating function to obtain an explicit formula for an and use this formula
to estimate an.

11.4.2. The recursions

Un = nUn−1 + 2Un−2 − (n − 4)Un−3 − Un−4

Vn = (n − 1)(Vn−1 + Vn−2) + Vn−3

arise in connection with the “menage” problems. Estimate Un and Vn from the recursions.

11.4.3. In Example 7.13 (p. 211), an upper bound was found for the running time to merge sort a 2k-long
list. Show that the running time to merge sort an n-long list is Θ(n log n).

Note: This is for general n, not just n = 2k and it is for any list, not just worst case.
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11.4.4. Let an be the number of permutations f of n such that fk(x) = x for all x ∈ n.

(a) Show that

an =
∑

d|k

(

n − 1

d − 1

)

(d − 1)! an−d,

where “d|k” beneath the summation sign—read “d divides k”—means that the sum is over all
positive integers d such that k/d is an integer.

(b) Estimate an from the recursion.

11.4.5. A functional digraph is a simple digraph in which each vertex has outdegree 1. (See Exercise 11.2.17.)
We say it is connected if the associated graph is connected.

(a) The number of labeled connected n-vertex functional digraphs is

n
∑

k=1

n! nn−k+1

(n − k)!
.

Obtain the estimate
√

πn/2nn+1 for this summation.

(b) The average number of components in a labeled n-vertex functional digraph is

n
∑

k=1

n!

k nk(n − k)!
.

Obtain an estimate for this summation.

11.4.6. Let an be the number of partitions of n into ordered blocks.

(a) Show that
∑

n anxn/n! = (2 − ex)−1

(b) Estimate an from the generating function.

*(c) By expanding (1 − ex/2)−1, show that

an =

∞
∑

k=1

kn

2k+1

and use this summation to estimate an.

11.4.7. Let S be a set of positive integers and let an be the number of permutations f of n such that none
of the cycles of f have a length in S. Then

∑

n≥0

anxn/n! =
1

1 − x
exp

(

−
∑

k∈S

xk/k

)

.

When S is a finite set, estimate an.

11.4.8. Let an be the number of labeled simple n-vertex graphs all of whose components are cycles.

(a) Show that
∑

n≥0

anxn/n! =
exp(−x/2 − x2/4)√

1 − x
.

(b) Obtain an estimate for an.

11.4.9. The EGFs for permutations all of whose cycles are odd is Ao(x) =
√

1+x
1−x , and that for permutations

all of whose cycles are even is Ae(x) = (1 − x2)−1/2.

(a) Why can’t our principles for generating functions be used to estimate the coefficients of Ao(x)
and Ae(x)?

(b) If you apply the relevant principle, it will give the right answer anyway for Ao(x) but not for
Ae(x). Apply it.

(c) Show that ae,2n+1 = 0 and ae,2n =
(

2n
n

)

(2n)! 4−n and then use Stirling’s formula.

(d) Use Ao(x) = (1 + x)(1 − x2)−1/2 to obtain formulas for ao,n.
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11.4.10. Let S be a set of positive integers and let S′ be those positive integers not in S. Let cn(S) be the
number of compositions of n all of whose parts lie in S, with c0(S) = 1.

(a) Derive the formula
∞
∑

n=0

cn(S)xn =
1

1 −
∑

k∈S xk
.

(b) Explain how to derive asymptotics for cn(S) when S is a finite set.

(c) Explain how to derive asymptotics for cn(S) when S′ is a finite set.

11.4.11. A “path” of length n is a sequence 0 = u0, u1, . . . , un = 0 of nonnegative integers such that uk+1 −
uk ∈ {−1, 0, 1} for k < n. The ordinary generating function for such paths by length is

1√
1 − 2x − 3x2

.

Estimate the number of such paths by length. (See Exercise 10.3.2.)

11.4.12. In Exercise 10.4.7 (p. 300) we showed that the generating function for an unlabeled binary RP-tree

by number of vertices is (1 − x −
√

1 − 2x − 3x2)/2x. Estimate the coefficients.

11.4.13. A certain kind of unlabeled RP-trees have the generating function

1 + x2 −
√

(1 + x2)2 − 4x

2

when counted by vertices. Estimate the number of such trees with n vertices.

11.4.14. Show that the EGF for permutations with exactly k cycles is

1

k!

{

ln
(

1

1 − x

)}k

and use this to estimate the number of such permutations when k is fixed and n is large.

11.4.15. Let hn be the number of unlabeled n-vertex RP-trees in which no vertex has outdegree 1 and let
H(x) be the ordinary generating function. Show that

H(x)2 − H(x) +
x

1 + x
= 0

and use this to estimate hn.

11.4.16. Let hn be the number of rooted labeled n-vertex trees for which no vertex has outdegree 2. It can

be shown that the EGF H(x) satisfies (1 + x)H(x) = xeH(x). Estimate hn.

11.4.17. Let D be a set of positive integers. Let an be the number of functions f from n to the positive
integers such that, (a) if f takes on the value k, then it takes on the value i for all 0 < i < k, and
(b) if f takes on the value k the number of times it does so lies in D. It can be shown that the EGF
for the an’s is

A(x) =

(

1 −
∑

k∈D

xk/k!

)−1

For whatever D’s you can, show how to estimate an.

11.4.18. Let the ordinary generating function for the number of rooted unlabeled n-vertex trees in which
every vertex has outdegree at most 2 be T (x). For convenience, set t0 = 1. It can be shown that

T (x) = 1 + x
(

T (x)2 + T (x2)
)

/2. Estimate the numbers of such trees.
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*11.4.19. The results here relate to Exercise 10.4.1 (p. 298). We suppose that A(x) satisfies Principle 11.6 and
that a0 = 0. Our notation will be that of Principle 11.6 and we assume that b = 0 for simplicity.

(a) Suppose that c < 0. Let B(x) = A(x)k. Show that we expect

bn/an ∼ (g(r)n−c)k−1Γ(−c)/Γ(−ck).

(b) Suppose that c > 0 and h(r) 6= 0. Let B(x) = A(x)k. Show that we expect

bn/an ∼ kh(r)k−1.

(c) Suppose that c = 1/2 and A(r) < 1. Let B(x) = (1 − A(x))−1. Derive

B(x) =
1 − h(x) + f(x)g(x)

(1 − h(x))2 − (1 − x/r)g(x)2

and use this to show that we expect bn/an ∼ (1−h(r))−2. You may assume that the denominator

(1 − h(x))2 − (1 − x/r)g(x)2 does not vanish on the interval [−r, r].

(d) Suppose that A(x) = 1 has a solution s ∈ (0, r). Show that it is unique. Let B(x) = (1−A(x))−1.

Show that we expect bn ∼ 1/(A′(s)sn+1). Prove that the solution A(s) = 1 will surely exist if
c < 0.

(e) Suppose r < 1. It can be shown that the radii of convergence of

∑

k≥2

A(xk)/k and
∑

k≥2

(−1)k−1A(xk)/k

both equal 1. Explain how we could use this fact to obtain asymptotics for sets and multisets in

Exercise 10.4.1 (p. 298) using Principle 11.6, if we could handle eA(x) using the principle.

11.4.20. Recall that the generating function for unlabeled full binary RP-trees by number of leaves is

1 −
√

1 − 4x

2
.

In the following, Exercise 11.4.19 will be useful.

(a) Use Exercise 10.4.1 (p. 298) to deduce information about lists of such trees.

*(b) Use Exercise 10.4.1(c,d) to deduce information about sets and multisets of such trees.
Hint. Show that

exp
(

−
√

1 − 4x/2
)

=
−
√

1 − 4x

2

∑

k≥0

(1 − 4x)k

22k(2k + 1)!
+
∑

k≥0

(1 − 4x)k

2k(2k)!
.

11.4.21. Let D be a set of nonnegative integers containing 0. Let tn be the number of rooted labeled n-vertex
trees in which the outdegree of every vertex lies in D. Let T (x) the EGF.

(a) Show that T (x) = x
∑

d∈D

T (x)d/d!.

*(b) Let k = gcd(D). Show that tn = 0 when n + 1 is not a multiple of k.

(c) For finite D with gcd(D) = 1, show how to estimate tn.

*11.4.22. For each part of Exercise 11.2.2 except (c), discuss what sort of information about ET would be

useful for estimating the coefficients of the exponential generating function given there. (See Exer-
cise 11.4.19.)
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Notes and References

The text by Sedgewick and Flajolet [15] covers some of the material in this chapter and Chap-
ter 10, and also contains related material.

Further discussion of exponential generating functions can be found in many of the references
given at the end of the previous chapter. Other generating functions besides ordinary and exponential
ones play a role in mathematics. Dirichlet series play an important role in some aspects of analytic
number theory. Apostol [1] gives an introduction to these series; however, some background in
number theory or additional reading in his text is required. In combinatorics, almost all generating
functions are ordinary or exponential. The next most important class, Gaussian generating functions,
is associated with vector spaces over finite fields. Goldman and Rota [7] discuss them.

Lagrange inversion can be regarded as a theorem in complex analysis or as a theorem in
combinatorics. In either case, it can be generalized to a set of simultaneous equations in several
variables. Garsia and Shapiro [6] prove such a generalization combinatorially and give additional
references. For readers familiar with complex analysis, here is a sketch of an analytic proof. Let
∑

anxn = A(x) = g(T (x)). By the Cauchy Residue Theorem followed by a change of variables,

nan =
1

2πi

∮

A′(x) dx

xn
=

1

2πi

∮

g′(T (x))T ′(x) dx

xn
=

1

2πi

∮

g′(T ) dT

(T/f(T ))n
,

which equals the coefficient of un−1 in g′(u)f(u)n by the Cauchy Residue Theorem.
Tutte’s work on rooted maps (Exercise 11.2.18) was done in the 1960s. Connections with his

work and the (asymptotic) enumeration of polyhedra are discussed in [3].
Pólya’s theorem and some generalizations of it were first discovered by Redfield [14] whose paper

was overlooked by mathematicians for about forty years. A translation of Pólya’s paper together
with some notes is available [13]. DeBruijn [4] give an excellent introduction to Pólya’s theorem and
some of its generalizations and applications. Harary and Palmer [9] discuss numerous applications
in graph theory.

Textbooks on combinatorics generally avoid asymptotics. Wilf [16, Ch. 5] has a nice introduction
to asymptotics which, in some ways, goes beyond ours. Books, such as the one by Greene and
Knuth [8], that deal with analysis of algorithms may have some material on asymptotics. If you are
interested in going beyond the material in this text, you should probably look at journal articles.
The article by Bender [2] is an introduction to some methods, including ways to deal with the misfits
in Example 11.32 (p. 353). (You should note that the hypotheses of Theorem 5 are too weak. A much
more extensive discussion has been given by [12]. This has been corrected by Meir and Moon [11].)
Our first principle for generating function asymptotics was adapted from the article by Flajolet and
Odlyzko [5]. Pólya [13] discusses computing asymptotics for several classes of chemical compounds.
A method for dealing with various types of trees, from combinatorial description to asymptotic
formula, is discussed by Harary, Robinson and Schwenk [10].
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