
CHAPTER 9

Rooted Plane Trees

Introduction

The most important recursive definition in computer science may be the definition of an rooted plane

tree (RP-tree) given in Section 5.4. For convenience and emphasis, here it is again.

Definition 9.1 Rooted plane trees An RP-tree consists of a set of vertices each of
which has a (possibly empty) linearly ordered list of vertices associated with it called its sons or
children. Exactly one of the vertices of the tree is called the root. Among all such possibilities,
only those produced in the following manner are RP-trees.

• A single vertex with no sons is an RP-tree. That vertex is the root.

• If T1, . . . , Tk is an ordered list of RP-trees with roots r1, . . . , rk and no vertices in common,
then an RP-tree T can be constructed by choosing an unused vertex r to be the root, letting
its ith child be ri and forgetting that r1, . . . , rk were called roots.

In Example 7.9 (p. 206) we sketched a proof that this definition agrees with the one given in Defi-
nition 5.12. Figure 9.1 illustrates the last stage in building an RP-tree by using our new recursive
definition. In that case k = 3.

We need a little more terminology. The RP-trees T1, . . . , Tk in the definition are called the
principal subtrees of T . A vertex with no sons is called a leaf.

The fact that a general RP-tree can be defined recursively opens up the possibility of recursive
algorithms for manipulating general classes of RP-trees. Of course, we are frequently interested in
special classes of RP-trees. Those special classes which can be defined recursively are often the most
powerful and elegant. Here are three such classes.

• In Example 7.14 (p. 213) we saw how a local description could be associated with a recursive
algorithm. In Example 7.16 (p. 214) a local description was expanded into a tree for the Tower
of Hanoi procedure. These local descriptions are simply recursive descriptions of RP-trees that
describe the algorithms. A leaf is the “output” of the algorithm. In these two examples, a leaf
is either a permutation or the movement of a single washer, respectively. In other words:

A recursive algorithm

contains

a local description

which is

a recursive definition of some RP-trees.

247

248 Chapter 9 Rooted Plane Trees

b

e f

j k l

c d

g h i

a

b c d

e f

j k l

g h i

Figure 9.1 The last stage in recursively building an RP-tree. Left: The trees T1, T2 and T3 with roots b,
c and d. Right: The new tree T with root a.

In Section 9.1, we’ll look at some recursive algorithms for traversing RP-trees.

• Compilers are an important aspect of computer science. Associated with a statement in a lan-
guage is a “parse tree.” This is an RP-tree in which the leaves are the parts of the language that

you actually see and the other vertices are grammatical terms. “Context free” grammars are re-
cursively defined and lead to recursively defined parse trees. In Section 9.2 we’ll briefly look at
some simple parse trees.

• Those RP-trees in which each vertex has either zero or two sons are called full binary RP-trees.
We’ll study them in Section 9.3, with emphasis on ranking and unranking them. (Ranking and
unranking were studied in Section 3.2.) Since the trees are defined recursively, so is their rank

function.

Except for a reference in Example 9.12 (p. 263), the sections of this chapter can be read independently

of one another.

9.1 Traversing Trees

A tree traversal algorithm is a systematic method for visiting all the vertices in an RP-tree. We’ve

already seen a nonrecursive traversal algorithm in Theorem 3.5 (p. 85). As we shall soon see a
recursive description is much simpler. It is essentially a local description.

Traversal algorithms fall into two categories called “breadth first” and “depth first,” with depth

first being the more common type. After explaining the categories, we’ll focus on depth first algo-
rithms.

The left side of Figure 9.2 shows an RP-tree. Consider the right side of Figure 9.2. There we
see the same RP-tree. Take your pencil and, starting at the root a, follow the arrows in such a way

that you visit the vertices in the order

a b e b f j f k f l f b a c a d g d h d i d a. 9.1

This manner of traversing the tree diagram, which extends in an obvious manner to any RP-tree T ,

is called a depth-first traversal of the ordered rooted tree T . The sequence of vertices (9.1) associated
with the depth-first traversal of the RP-tree T will be called the depth-first vertex sequence of T
and will be denoted by DFV(T). If you do a depth-first traversal of an RP-tree T and list the edges

encountered (list an edge each time your pencil passes its midpoint in the diagram), you obtain the
depth-first edge sequence of T , denoted by DFE(T). In Figure 9.2, the sequence DFE(T) is

{a, b} {b, e} {b, e} {b, f} {f, j} {f, j} {f, k} {f, k} {f, l} {f, l} {b, f}

{a, b} {a, c} {a, c} {a, d} {d, g} {d, g} {d, h} {d, h} {d, i} {d, i} {a, d}.

9.1 Traversing Trees 249

a

b c d

e f

j k l

g h i

a

b c d

e f

j k l

g h i

Figure 9.2 Left: An RP-tree with root a. Right: Arrows show depth first traversal of the tree.

The other important linear order associated with RP-trees is called breadth-first order. This order
is obtained, in the case of Figure 9.2, by reading the vertices or edges level by level, starting with
the root. In the case of vertices, we obtain the breadth-first vertex sequence (BFV(T)). In Figure 9.2,
BFV(T) = abcdefghijkl. Similarly, we can define the breadth-first edge sequence (BFE(T)).

Although we have defined these orders for trees, the ideas can be extended to other graphs.
For example, one can use a breadth first search to find the shortest (least number of choices) route
out of a maze: Construct a decision tree in which each vertex corresponds to an intersection in the
maze. (More than one vertex may correspond to the same intersection.) A vertex corresponding
to an intersection already encountered in the breadth first search has no sons. The decisions at an
intersection not previously encountered are all possibilities of the form “follow a passage to the next
intersection.”

Example 9.1 Data structures for tree traversals Depth-first and breadth-first traversals
have data structures naturally associated with their computer implementations.

BFV(T) can be implemented by using a queue. A queue is a list from which items are removed
at the opposite end from which they are added (first in, first out). Checkout lines at markets are
queues. The root of the tree is listed and placed on the queue. As long as the queue is not empty,
remove the next vertex from the queue and place its sons on the queue. You should be able to modify
this to give BFE(T)

DFV(T) can be implemented by using a stack. A stack is a list from which items are removed at
the same end to which they are added (last in, first out). They are used in computer programming
to implement recursive code. (See Example 7.17 (p. 216).) For DFV, the root of the tree is listed
and placed on the stack. As long as the stack is not empty, remove the vertex that is on the top of
the stack from the stack and place its sons, in order, on the stack so that leftmost son is on the top
of the stack.

When a vertex is added to or removed from the data structure, you may want to take such
action; otherwise, you have will have traversed the tree without accomplishing anything.

Depth First Traversals

In a tree traversal, we often want to process either the vertices or edges and do so either the first or
last time we encounter them. If you process something only the first time it is encountered, this is
a preorder traversal; if you list it only the last time it is encountered, this is a postorder traversal;
This leads to four concepts:

PREV(T) preorder vertex sequence;

POSTV(T) postorder vertex sequence;

PREE(T) preorder edge sequence;

POSTE(T) postorder edge sequence.

250 Chapter 9 Rooted Plane Trees

Here’s the promised recursive algorithm for depth first traversal of a tree. The sequences PREV,

POSTV, PREE and POSTE are initialized to empty. They are “global variables,” so all levels of

the recursive call are working with the same four sequences.

Procedure DFT(T)

Let r be the root of T

Append vertex r to PREV /* PREV */

Let k be the number of principal subtrees of T

/* By convention, the For loop is skipped if k = 0. */

For i = 1, 2, . . . , k

Let Ti be the ith principal subtree of T

Let ri be the root of Ti

Append edge {r, ri} to PREE /* PREE */

DFT(Ti)

Append edge {r, ri} to POSTE /* POSTE */

Append vertex r to POSTV /* POSTV */

End for

Return

End

For example, in Figure 9.2, PREV(T) = abefjklcdghi and POSTV(T) = ejklfbcghida. Our pseu-

docode is easily modified to do these traversals: Simply cross out those “List” lines whose comments

refer to traversals you don’t want.

When a tree is being traversed, the programmer normally does not want a list of the vertices

or edges. Instead, he wants to take some sort of action. Thus “Append vertex v . . .” and “Append

edge {u, v} . . .” would probably be replaced by something like “DoVERTEX(v)” and “DoEDGE(u, v),”

respectively.

Example 9.2 Reconstructing trees Does a sequence like PREV(T) have enough informa-

tion to reconstruct the tree T from the sequence? Of course, one might replace PREV with other

possibilities such as POSTV.

The answer is “no”. One way to show this is by finding two trees T and U with PREV(T) =

PREV(U) — or using whatever other possibility one wants in place of PREV. The trouble with this

approach is that we need a new example for each case. We’ll use the Pigeonhole Principle (p. 55)

to give a proof that is easily adapted to other situations. Given a set V of n labels for the vertices,

there are n! possible sequences for PREV since each such sequence must be a permutation of V .

Let B be the set of these permutations and let A be the set of RP-trees with vertex set V . Then

PREV : A → B and we want to show that two elements of A map to the same permutation. By the

Pigeonhole Principle, it suffices to show that |A| > |B|. We already know that |B| = n! There are

nn−2 trees by Example 5.10 (p. 143). Since many RP-trees may give the same tree (root and order

information is removed), we have |A| ≥ nn−2. We need to show that n! < nn−2 for some value of n.

This can be done by finding such an n or by using Stirling’s Formula, Theorem 1.5 (p. 12). We leave

this to you.

9.1 Traversing Trees 251

Example 9.3 Graph traversal and spanning trees One can do depth first traversal of a
graph to construct a lineal spanning tree a concept defined in Definition 6.2 (p. 153). The following
algorithm finds a lineal spanning tree with root r for a connected simple graph G = (V, E). The
graph is a “global variable,” so changes to it affect all the levels of the recursive calls. When a vertex
is removed from G, so are the incident edges. The comments refer to the proof of Theorem 6.2
(p. 153). We leave it to you to prove that the algorithm does follow the proof as claimed in the
comments.

/* Generate a lineal spanning tree of G rooted at r. */

LST(r)
If (no edges contain r)

Remove r from G
Return the 1 vertex tree with root r

End if

/* f = {r, s} is as in the proof. */

Choose {r, s} ∈ E
Remove r from G, saving it and its incident edges

/* S corresponds to T (A) in the proof. */

S = LST(s)
Restore r and the saved edges whose ends are still in G
/* R corresponds to T (B) in the proof. */

R = LST(r)
Join S to R by an edge {r, s} to obtain a new tree T
Remove r from G
Return T

End

Example 9.4 Counting RP-trees When doing a depth first traversal of an unlabeled RP-tree,
imagine listing the direction of each step: a for away from the root and t for toward the root. What
can we see in this sequence of a’s and t’s?

Each edge contributes one a and one t since it is traversed in each direction once. If the tree
has n edges, we get a 2n-long sequence containing n copies of a and n copies of t, say s1, . . . , s2n. If
s1, . . . , sk contains dk more a’s than t’s, we will be a distance dk from the root after k steps because
we’ve taken d more steps away from the root than toward it. In particular dk ≥ 0 for all k.

Thus a tree with n edges determines a unique sequence of n a’s and n t’s in which each initial
part of the sequence contains at least as many a’s as t’s. Furthermore, you should be able to see how
to reconstruct the tree if you are given such a sequence. Thus there is a bijection between the trees
and the sequences. It follows from the first paragraph of Example 1.13 (p. 15) that the number of
n-edge unlabeled RP-trees is Cn, the Catalan number.

Since a tree with n vertices has n − 1 edges, it follows that the number of n-vertex unlabeled
RP-trees is Cn−1. By Exercise 9.3.12 (p. 266), it follows that the number of unlabeled binary RP-trees
with n leaves is Cn−1. Thus the solution to Exercise 9.3.13 provides a formula for the Catalan
numbers.

Exercises

9.1.1. Write pseudocode for recursive algorithms for PREV(T), PREE(T) and POSTE(T).

9.1.2. In the case of decision trees we are only interested in visiting the leaves of the tree. Call the resulting
sequence DFL(T) Write pseudocode for a recursive algorithm for DFL(T). What is the connection
with the traversal algorithm in Theorem 3.5 (p. 85)?

252 Chapter 9 Rooted Plane Trees

9.1.3. Write pseudocode to implement breadth first traversal using a queue. Call the operations for adding
to the queue and removing from the queue INQUEUE and OUTQUEUE, respectively.

9.1.4. Write pseudocode to implement PREV(T) using a stack. Call the operations for adding to the stack
and removing from the stack PUSH and POP, respectively.

9.1.5. Construct a careful proof that the algorithm in Example 9.3 does indeed construct a lineal spanning
tree.

9.1.6. In contrast to Example 9.2, if PREV(T) = PREV(U) and POSTV(T) = POSTV(U), then T = U .
Another way to state this is:

Given PREV(T) and POSTV(T), we can reconstruct T . 9.2

The goal of this exercise is to prove (9.2) by induction on the number of vertices.
Let n = |T |, the number of vertices of T . Let v be the root of T . Let PREV(T) = a1, . . . , an and

POSTV(T) = z1, . . . , zn.
If n > 1, we may suppose that T consists of the RP-trees T1, . . . , Tk joined to the root v. Let U

be the RP-tree with root v joined to the trees T2, . . . , Tk. (If k = 1, U is just the single vertex v.)

(a) Prove (9.2) is true when n = 1.

(b) Prove that a2 is the root of T1

(c) Suppose zt = a2. (This must be true for some t since PREV and POSTV are both permutations
of the vertex set.) Prove that POSTV(T1) = z1, . . . , zt.

(d) With t as above, prove that PREV(T1) = a2, . . . , at+1.
Hint. How many vertices are there in T1?

(e) Prove that PREV(U) = v, at+2, . . . , an and POSTV(U) = zt+1, . . . , zn.

(f) Complete the proof.

9.1.7. In Example 9.2, we proved that a tree cannot be reconstructed from the sequence PREV. The proof
also works for POSTV.

(a) Find two different RP-trees T and U with PREV(T) = PREV(U).

(b) Find two different RP-trees T and U with POSTV(T) = POSTV(U).

9.1.8. Use Exercise 9.1.6 to write pseudocode for a recursive procedure to reconstruct a tree from PREV
and POSTV.

9.1.9. If T is an unlabeled RP-tree, define a sequence D(T) of ±1’s as follows. Perform a depth first traversal
of the tree. Whenever an edge is followed from father to son, list a +1. Whenever an edge is followed
from son to father, list a −1.

(a) Let T1, . . . , Tm be unlabeled RP-trees and let T be the tree formed by joining the roots of each
of the Ti’s to a new root to form a new unlabeled RP-tree. Express D(T) in terms of D(T1), . . .,
D(Tm).

(b) IF D(T) = s1, . . . , sn, show that n is twice the number of edges of T and show that
∑k

i=1 si ≥ 0

for all k with equality when k = n.

*(c) Let ~s = s1, . . . , sn be a sequence of ±1’s. Show that ~s comes from at most one tree and that it

comes from a tree if and only if
∑k

i=1 si ≥ 0 for all k, with equality when k = n.

9.2 Grammars and RP-Trees 253

(a) The first step.

∗

A+5 2+(3∗X)

(b) An intermediate step.

∗

A+5 +

2 3∗X

(c) The final result.

∗

+ +

A 5 2 *

3 X

Figure 9.3 Interpreting the expression (A + 5) ∗ (2 + (3 ∗ X)).

9.2 Grammars and RP-Trees

Languages are important in computer science. Compilers convert programming languages into ma-
chine code. Automatic translation projects are entangled by the intricacies of natural languages.
Researchers in artificial intelligence are interested in how people manage to understand language.
We look briefly at a simple, small part of all this: “context-free grammars” and “parse trees.” To
provide some background material, we’ll look at arithmetic expressions and at simple sentences.

Unfortunately, we’ll be introducing quit a bit of terminology. Fortunately, you won’t need most
of it for later sections, so, if you forget it, you can simply look up what you need in the index at the
time it is needed.

Example 9.5 Arithmetic expressions Let’s consider the meaning of the expression
(A + 5) ∗ (2 + (3 ∗ X)).

It means A + 5 times 2 + (3 ∗ X), which we can represent by the RP-tree in Figure 9.3(a). We
can then interpret the subexpressions and replace them by their interpretations and so on until we
obtain Figure 9.3(c). We can represent this recursive procedure as follows, where “exp” is short for
“expression”.

INTERPRET(exp)
If (exp has no operation)

Return the RP-tree with root exp
and no other vertices.

End if

Let exp = (expl op expr).
Return the RP-tree with root op,

left principal subtree INTERPRET(expl) and

right principal subtree INTERPRET(expr).

End

Now suppose we wish to evaluate the expression, with a procedure we’ll call EVALUATE. One
way of doing that would be to modify INTERPRET slightly so that it returns values instead of trees.
A less obvious method is to traverse the tree generated by INTERPRET in POSTV order. Each leaf
is replaced by its value and each nonleaf is replaced by the value of performing the operation it
indicates on the values of its two sons.

To illustrate this, POSTV of Figure 9.3(c) is A 5 + 2 3 X ∗ + ∗. Thus we replace the leaves
labeled A and 5 with their values, then the leftmost vertex labeled + with the value of A + 5, and
so on. POSTV of a tree associated with calculations is called postorder notation or reverse Polish

notation. It is used in some computer languages such as Forth and PostScript R© and in some handheld
calculators.

254 Chapter 9 Rooted Plane Trees

Example 9.6 Very simple English Languages are very complicated creations; however, we can
describe a rather simple form of an English sentence as follows:

(a) One type sentence consists of the three parts noun-phrase, verb, noun-phrase and a period
in that order.

(b) A noun-phrase is either a noun or an adjective followed by a noun-phrase.

(c) Lists of acceptable words to use in place of verb, noun and adjective are available.

This description is a gross oversimplification. It could lead to such sentences as “big brown
small houses sees green green boys.” The disagreement between subject and verb (plural versus
singular) could be fixed rather easily, but the nonsense nature of the sentence is not so easily fixed.
If we agree to distinguish between grammatical correctness and content, we can avoid this problem.
(As we shall see in a little while, this is not merely a way of defining our difficulty out of existence.)

Let’s rephrase our rules from the last example in more concise form. Here’s one way to do that.

(a) sentence → noun-phrase verb noun-phrase .

(b) noun-phrase → adjective noun-phrase | noun

(c) adjective → big | small | green | · · ·

noun → houses | boys | · · ·

verb → sees | · · ·

These rules along with the fact that we are interested in sentences are what is called a “context-free
grammar.”

Definition 9.2 Context-free grammar A context-free grammar consists of

1. a finite set S of nonterminals;

2. a finite set T of terminals;

3. a start symbol s0 ∈ S;

4. a finite set of productions of the form s → x1 . . . xn where s ∈ S and xi ∈ S ∪ T . We
allow n = 0, in which case the production is “s →.”

We’ll distinguish between terminal and nonterminal symbols by writing them in the fonts “ter-
minal” and “nonterminal.” If we don’t know whether or not an element is terminal, we will use
the nonterminal font. (This can happen in a statement like, x ∈ S ∪ T .)

In the previous example, the start symbol is sentence and the productions are given in (a)–(c).

The productions of the grammar give the structural rules for building the language associated
with the grammar. This set of rules is called the syntax of the language. The grammar is called
context-free because the productions do not depend on the context (surroundings) in which the
nonterminal symbol appears. Natural languages are not context-free, but many computer languages
are nearly context-free.

Any string of symbols that can be obtained from the start symbol (sentence above) by repeated
substitutions using the productions is called a sentential form.

Definition 9.3 The language of a grammar A sentential form consisting only of terminal
symbols is a sentence. The set of sentences associated with a grammar G is called the language
of the grammar and is denoted L(G).

9.2 Grammars and RP-Trees 255

noun-phrase

adjective

little

noun-phrase

adjective

red

noun-phrase

noun

houses

Figure 9.4 The parse tree for the sentence little red houses.

Processes that obtain one string of symbols from another by repeated applications of productions
are called derivations. To indicate that little red noun can be derived from noun-phrase, we write

noun-phrase
∗
⇒ little red noun.

Thus

sentence
∗
⇒ big brown small houses sees green green boys.

We can represent productions by RP-trees where a vertex is the left side of a production and
the leaves are the items on the right side; for example,

noun-phrase → adjective noun-phrase

becomes

noun-phrase

adjective noun-phrase

The collection of productions thus become local descriptions for trees corresponding to derivations
such as that shown in Figure 9.4. We call such a tree a parse tree. The string that was derived from
the root of the parse tree is the DFV sequence of the tree. A sentence corresponds to a parse tree
in which the root is the start symbol and all the leaves are terminal symbols.

How is Figure 9.3 related to parse trees? There certainly seems to be some similarity, but all
the symbols are terminals. What has happened is that the parse tree has been squeezed down to
eliminate unnecessary information. Before we can think of Figure 9.3 as coming from a parse tree,
we need to know what the grammar is. Here’s a possibility, with exp (short for expression) the start
symbol, number standing for any number and id standing for any identifier; i.e., the name of a
variable.

exp → term | term op term

term → (exp) | id | number
op → + | − | ∗ | /

A computer language has a grammar. The main purpose of a compiler is to translate gram-
matically correct code into machine code. A secondary purpose is to give the programmer useful
messages when nongrammatical material is encountered. Whether grammatically correct statements
make sense in the context of what the programmer wishes to do is beyond the ken of a compiler;
that is, a compiler is concerned with syntax, not with content.

Compilers must use grammars backwards from the way we’ve been doing it. Suppose you are
functioning as a general purpose compiler. You are given the grammar and a string of terminal
symbols. Instead of starting with the start symbol, you must start with the string of terminals and
works backwards, creating the parse tree from the terminals at the leaves back to the start symbol at
the root. This is called parsing. A good compiler must be able to carry out this process or something

256 Chapter 9 Rooted Plane Trees

like it quite rapidly. For this reason, attention has focused on grammars which are quickly parsed
and yet flexible enough to be useful as computer languages.

When concerned with parsing, one should read the productions backwards. For example,

term → (exp) | id | number

would be read as the three statements:

• If one sees the string “(exp)”, it may be thought of as a term.

• If one sees an id, it may be thought of as a term.

• If one sees a number, it may be thought of as a term.

Example 9.7 Arithmetic expressions again Our opening example on arithmetic expressions
had a serious deficiency: Parentheses were required to group things. We would like a grammar that
would obey the usual rules of mathematics: Multiplication and division take precedence over addition
and subtraction and, in the event of a draw, operations are performed from left to right.

We can distinguish between factors, terms (products of factors) and expressions (sums of terms)
to enforce the required precedence. We can enforce the left to right rule by one of two methods:

(a) We can build it into the syntax.

(b) We can insist that in the event of an ambiguity the leftmost operation should be performed.

The latter idea has important ramifications that make parsing easier. You’ll learn about that when
you study compilers. We’ll use method (a). Here’s the productions, with exp the start symbol.

exp → term | exp + term | exp − term

term → factor | term ∗ factor | term / factor

factor → (exp) | id | number

As you can see, even this a language fragment is a bit complicated.

By altering (4) of Definition 9.2 (p. 254), we can get other types of grammars. A more general
replacement rule is

4′. a finite set of productions of the form v1 . . . vm → x1 . . . xn where vi, xi ∈ S ∪ T , m ≥ 1 and
n ≥ 0.

This gives what are called phrase structure grammars. Grammars that are this general are hard to
handle.

A much more restrictive replacement rule is

4′′. a finite set of productions of the form s → t1 . . . tn or s → t1 . . . tnr and where r,s ∈ S, n ≥ 0
and ti ∈ T .

This gives what are called regular grammars, which are particularly easy to study.

Example 9.8 Finite automata and regular grammars In Section 6.6 we studied finite au-
tomata and, briefly, Turing machines. If A is a finite automaton, the language of A, L(A), is the
set of all input sequences that are recognized by A. With a proper definition of recognition for Tur-
ing machines, the languages of phrase structure grammars are precisely the languages recognized by
Turing machines. We will prove the analogous result for regular grammars:

Theorem 9.1 Regular Grammars Let L be a set of strings of symbols. There is a
regular grammar G with L(G) = L if and only if there is a finite automaton A with L = L(A).
In other words, the languages of regular grammars are precisely the languages recognized by
finite automata.

9.2 Grammars and RP-Trees 257

Proof: Suppose we are given an automaton A = (S, I, f, s0, A). We must exhibit a regular grammar
G with L(G) = L(A). Here it is.

1. The set of nonterminal symbols of G is S, the set of states of A.

2. The set of terminal symbols of G is I, set of input symbols of A.

3. The start symbol of G is s0, the start symbol of A.

4. The productions of G are all things of the form s → it or s → j where f(s, i) = t or f(s, j) ∈ A,
the accepting states of A.

Clearly G is a regular grammar. It is not hard to see that L(G) = L(A).

Now suppose we are given a regular grammar G. We must exhibit an automaton A with
L(A) = L(G). Our proof is in three steps. First we show that there is a regular grammar G′

with L(G′) = L(G) and with no productions of the form s → t. Second we show that there is a reg-
ular grammar G′′ with L(G′′) = L(G′) in which the right side of all productions are either empty
or of the form is, that is i is terminal and s is nonterminal. Finally we show that there is a nonde-
terministic finite automaton N that recognizes precisely L(G′′). By the “no free will” theorem in
Section 6.6, this will complete the proof.

First step: Suppose that G contains productions of the form s → t. We will construct a new regular
grammar G′ with no productions of this form and L(G) = L(G′). (If there are no such productions,
simply let G′ = G.) The terminal, nonterminal and start symbols of G′ are the same as those of G.
Let R be the right side of a production in G that is not simply a nonterminal symbol. We will let
s → R be a production in G′ if and only if

• s → R is a production in G, or

• There exist x1, . . . , xn such that s → x1, x1 → x2, · · · , xn−1 → xn and xn → R are all productions
in G.

You should be able to convince yourself that L(G′) = L(G).

Second step: We now construct a regular grammar G′′ in which the right side of every production
is either empty or has exactly one terminal symbol. The terminal symbols of G′′ are the same as
those of G′. The nonterminal symbols of G′′ are those of G′ plus some additional ones which we’ll
define shortly.

Let s → i1 . . . int be a production in G′. If n = 1, this is also a production in G′′. By the
construction of G′, we cannot have n = 0, so we can assume n > 1. Let σ stand for the right side of
the production. Introduce n − 1 new states (s, σ, k) for 2 ≤ k ≤ n. Let G′′ contain the productions

• s → i1(s, σ, 2);

• (s, σ, k) → ik(s, σ, k + 1), for 1 < k < n (There are none of these if n = 2.);

• (s, σ,n) → int.

Let s → i1 . . . in be a production in G′. (An empty right hand side corresponds to n = 0.) If
n = 0 or n = 1, let this be a production in G′′; otherwise, use the idea of the previous paragraph,
omitting t. You should convince yourself that L(G′′) = L(G′).

Third step: We now construct a nondeterministic finite automaton N that recognizes precisely L(G).
The states of N are the internal symbols of G′′ together with a new state a, the start state is the
start symbol, and the input symbols are the terminal symbols. Let a be an accepting state of N .
Let s → R be a production of G′′. There are three possible forms for R:

• If R is empty, then s is an accepting state of N .

• If R = i, then (s, i, a) is an edge of N .

• if R = it, then (s, i, t) is an edge of N .

You should convince yourself that N accepts precisely L(G′′).

258 Chapter 9 Rooted Plane Trees

Exercises

9.2.1. Draw the trees like Figure 9.3(c) to interpret the following expressions.

(a) (((1 + 2) + 3) + 4) + 5

(b) ((1 + 2) + (3 + 4)) + 5

(c) 1 + (2 + (3 + (4 + 5)))

(d) (X + 5 ∗ Y)/(X − Y)

(e) (X ∗ Y − 3) + X ∗ (Y + 1)

9.2.2. How might the ideas in Example 9.5 be modified to allow for unary minus as in (−A) ∗ B?

9.2.3. Write pseudocode for the two methods suggested in Example 9.5 for calculating the value of an
arithmetic expression.

9.2.4. Using the grammar of Example 9.7, construct parse trees for the following sentences.

(a) (X + 5 ∗ Y)/(X − Y)

(b) (X ∗ Y − 3) + X ∗ (Y + 1)

9.2.5. Add the following features to the expressions of Example 9.7.

(a) Unary minus.

(b) Exponentiation using the operator ∗∗. Ambiguities are resolved in the reverse manner from the
other arithmetic operations: A ∗∗ B ∗∗ C is the same as A ∗∗ (B ∗∗ C).

(c) Replacement using the operator :=. Only one use of the operator is allowed.

(d) Multiple replacement as in

A := 4 + B := C := 5 + 2 ∗ 3,

which means that C is set equal to 5 + 2 ∗ 3, B is set to equal to C and A is set equal to
4 + B.

9.2.6. Let G be the grammar with the start state s and the productions

(i) s → xt and s → yt;

(ii) t → R where R is either empty or one of +xt, +yt or −xt.

(a) Describe L(G).

(b) Follow the steps in the construction of the corresponding nondeterministic finite automaton;

that is, describe G′, G′′ and N that were constructed in the proof.

(c) Continuing the previous part, construct a deterministic machine as done in Section 6.6 corre-
sponding to N .

(d) Can you construct a simpler deterministic machine to recognize L(G)?

9.3 Unlabeled Full Binary RP-Trees 259

*9.3 Unlabeled Full Binary RP-Trees

We’ll begin with a review of material discussed in Examples 7.9 (p. 206) and 7.10. Roughly speaking,
an unlabeled RP-tree is an RP-tree with the vertex labels erased. Thus, the order of the sons of a
vertex is still important. A tree is “binary” (resp. “full binary”) if each nonleaf has at most (resp.
exactly) two sons. Figure 9.5 shows some unlabeled full binary RP-trees. Here is a more precise
pictorial definition. Compare it to Definition 9.1 for (labeled) RP-trees.

Definition 9.4 Unlabeled binary rooted plane trees The following are unlabeled
binary RP-trees. Roots are indicated by • and other vertices by ◦.

(i) The single vertex • is such a tree.

(ii) If T1 is one such tree, so is the tree formed by (a) drawing T1 root upward, (b) adding a •
above T1 and connecting • to the root of T1, and (c) changing the root of T1 to ◦.

(iii) If T1 and T2 are two such trees, so is the tree formed by (a) drawing T1 to the left of T2, both
root upward, (b) adding a • above them and connecting it to their roots, and (c) changing
the roots of T1 and T2 to ◦’s.

If we omit (ii), the result is unlabeled full binary RP-trees.

These trees are often referred to as “unlabeled ordered (full) binary trees.” Why? To define a binary
tree, one needs to have a root. Drawing a tree in the plane is equivalent to ordering the children of
each vertex. Sometimes the adjective “full” is omitted. In this section, we’ll study unlabeled ordered
full binary trees.

We can build all unlabeled full binary RP-trees recursively by applying the definition over and
over. To begin with there are no trees, so all we get is a single vertex by (1) of the definition. This
tree can then be used to build the 3 vertex full binary RP-tree shown in the next step of Figure 9.5.
Using the two trees now available, we can build the three new trees shown in the right hand step of
Figure 9.5. In general, if we have a total of tn trees at step n, then t1 = 1 (the single vertex) and
tn+1 = 1 + (tn)2 + 1 (either use the single vertex tree or join two trees T1 and T2 to a new root).

Example 9.9 Counting and listing unlabeled full binary RP-trees How many unlabeled
full binary RP-trees are there with n leaves? How can we list them?

As we shall see, answers to these questions come almost immediately from the recursive defini-
tion. It is important to note that

Definition 9.4 provides exactly one way to produce every unlabeled full binary RP-tree.

If there were more than one way to produce some of the trees from the definition, we would not be
able to obtain answers to our questions so easily, if at all.

We begin with counting. Let bn be the desired number. Clearly b0 = 0, since a tree has at least
one leaf. Let’s look at how our definition leads to trees with n leaves.

According to the definition, an unlabeled full binary RP-tree will be either a single vertex,
which contributes to b1, or it will have exactly two principal subtrees, both of which are unlabeled
full binary RP-trees. If the first of these has k leaves, then the second must have n−k. By the Rules
of Sum and Product,

bn =

n−1
∑

k=1

bkbn−k if n > 1. 9.3

Using this we can calculate the first few values fairly easily:

b1 = 1 b2 = 1 b3 = 2 b4 = 5 b5 = 14 b6 = 42 b7 = 132.

260 Chapter 9 Rooted Plane Trees

• •

◦ ◦

•

◦ ◦

◦ ◦

•

◦ ◦

◦ ◦

•

◦ ◦

◦ ◦◦ ◦

Figure 9.5 The first three stages in building unlabeled full binary RP-trees recursively. A ◦ is a vertex of
a previously constructed tree and a • is the root of a new tree.

Notice how the recursion came almost immediately from the definition.

So far, this has all been essentially a review of material in Examples 7.9 and 7.10. Now we’ll

look at something new: listing the trees based on the recursive description. Here’s some pseudocode

to list all binary RP-trees with n leaves.

/* Make a list of n-leaf unlabeled full binary RP-trees */

Procedure BRPT(n)

If (n = 1), then Return the single vertex tree

Set List empty

For k = 1, 2, · · · , n − 1:

/* Get a list of first principal subtrees. */

SL = BRPT(k)

/* Get a list of second principal subtrees. */

SR = BRPT(n − k)

For each T1 ∈ SL:

For each T2 ∈ SR:

Add JOIN(T1, T2) to List

End for

End for

End for

Return List

End

The procedure JOIN(T1, T2) creates a full binary RP-tree with principal subtrees T1 and T2. The

outer for loop is running through the terms in the summation in (9.3). The inner for loop is

constructing each of the trees that contribute to the product bkbn−k. This parallel between the

code and (9.3) is perfectly natural: They both came from the same recursive description of how to

construct unlabeled full binary RP-trees.

What happened in this example is typical. Given a recursive description of how to uniquely

construct all objects in some set, we can provide both a recursion for the number of them and

pseudocode to list all of them. It is not so obvious that such a description usually leads to ranking

and unranking algorithms as well. Rather than attempt a theoretical explanation of how to do this,

we’ll look at examples. Since it’s probably not fresh in your mind, it would be a good idea to review

the concepts of ranking and unranking from Section 3.2 (p. 75) at this time.

9.3 Unlabeled Full Binary RP-Trees 261

B(1): •
• B(n):

•

. . .

J(B(1)×B(n−1)) J(B(2)×B(n−2)) · · · J(B(n−1)×B(1))

Figure 9.6 The local description for n-leaf unlabeled full binary RP-trees. We assume that n > 1 in the
right hand figure. B stands for BRPT and J(C,D) = {JOIN(c, d) | c ∈ C, d ∈ D}, with the set made into
an ordered list using lexicographic order based on the orderings in C and D obtained by lex ordering all the
pairs (RANK(c), RANK(d)), with c ∈ C and d ∈ D.

Example 9.10 A ranking for permutations We’ll start with permutations since they’re fairly
simple.

Suppose that S is an n-set with elements s1 < · · · < sn. The local description of how to generate
L(S), the permutations of S listed in lex order, is given in Figure 7.2 (p. 213). This can be converted
to a verbal recursive description: Go through the elements si ∈ S in order. For each si, list all the
permutations of S−{si} in lex order, each preceded by “si,”. (The comma after si is not a misprint.)

How does this lead to RANK and UNRANK functions? Let σ: n → n be a permutation and
let RANK(sσ(1), . . . , sσ(n)) denote the rank of sσ(1), . . . , sσ(n). Since the description is recursive, the
rank formula will be as well. We need to start with n = 1. Since there is only one permutation of a
one-element set, RANK(σ) = 0.

Now suppose n > 1. There are σ(1) − 1 principal subtrees of L(S) to the left of the subtree

sσ(1), L(S − {sσ(1)}),

each of which has (n − 1)! leaves. Thus we have

RANK(sσ(1), . . . , sσ(n)) = (σ(1) − 1)(n − 1)! + RANK(sσ(2), . . . , sσ(n)).

You should also be able to see this by looking at Figure xrefLexOrderLocal.
As usual the rank formula can be “reversed” to do the unranking: Let UNRANK(r, S) denote

the permutation of the set S that has rank r. Let q = r/(n−1)! with the remainder discarded. Then

UNRANK(r, S) = sq+1, UNRANK
(

r − (n − 1)!q, S − {sq+1}
)

.

Example 9.11 A ranking for unlabeled full binary RP-trees How can we rank and unrank
BRPT(n), the n-leaf unlabeled full binary RP-trees?

Either Definition 9.1 or the listing algorithm BRPT that we obtained from it in Example 9.9 can
be used as a starting point. Each gives a local description of a decision tree for generating n-leaf
unlabeled full binary RP-trees. The only thing that is missing is an ordering of the sons in the
decision tree, which can be done in any convenient manner. The listing algorithm provides a specific
order for listing the trees, so we’ll use it. It’s something like lex order:

• first by size of the left tree (the outer loop on k),

• then by the rank of the left tree (the middle loop on T1 ∈ SL),

• finally by the rank of the right tree (the inner loop on T2 ∈ SR).

9.4

The left part of the figure is not a misprint: the top • is the decision tree and the bottom • is it’s
label: the 1-leaf tree. Carrying this a bit further, Figure 9.7 expands to local description for 2 and
3 leaves.

Expanding this local description for any value of n would give the complete decision tree in
a nonrecursive manner. However, we have learned that expanding recursive descriptions is usually
unnecessary and often confusing. In fact, we can obtain ranking and unranking algorithms directly
from the local description, as we did for permutations in the preceding example.

262 Chapter 9 Rooted Plane Trees

B(2):
•

• B(1) × B(1)
•

• •

B(3):
•

• •

• •

B(1) × B(2) B(2) × B(1)

B(1) × (B(1) × B(1)) (B(1) × B(1)) × B(1)
•

• •
• •

•
••

••

Figure 9.7 An expansion of Figure 9.6 for n = 2 and n = 3. The upper trees are the expansion of
Figure 9.6. The lower trees are the full binary RP-trees that occur at the leaves.

Let’s get a formula for the rank. Since our algorithm for listing is recursive, our rank formula

will also be recursive. We must start our recursive formula with the smallest case, |T | = 1. In this

case there is only one tree, namely a single vertex. Thus T = • and RANK(T) = 0.

Now suppose |T | > 1. and let T1 and T2 be its first and second principal subtrees. (Or left

and right, if you prefer.) We need to know which trees come before T in the ranking. Suppose Q

has principal subtrees Q1 and Q2 and |Q| = |T |. The information in (9.4) says that the tree T is

preceded by precisely those trees Q for which |Q| = |T |, and either

• |Q1| < |T1| OR

• |Q1| = |T1| AND RANK(Q1) < RANK(T1) OR

• Q1 = T1 AND RANK(Q2) < RANK(T2).

The number of trees in each of these categories is

•
∑

k<|T1|

bkbn−k, where terms were collected by k = |Q1|,

• RANK(T1) × b|T2|, and

• 1 × RANK(T2).

Hence

Theorem 9.2 Rank of Unlabeled Full Binary RP-Trees The rank of an unlabeled full

binary RP-tree with n leaves is 0 if n = 1 and otherwise is

RANK(T) =
∑

k<|T1|

bkbn−k + RANK(T1)b|T2| + RANK(T2), 9.5

where T1 and T2 are the first and second principal subtrees of T and bk is number of k-leaf

unlabeled full binary RP-trees.

9.3 Unlabeled Full Binary RP-Trees 263

RANK

(

•
•
•
•
•
••

•
•

•
•
•

)

= b1b4 + b2b3 + RANK

(

•
•
•

•
•
•

)

b2 + RANK
(

•
•
•

)

RANK

(

•
•
•

•
•
•

)

= b1b2 + RANK
(

•
•
•

)

b1 + RANK(•)

RANK
(

•
•
•

)

= RANK(•)b1 + RANK(•)

Figure 9.8 A recursive rank calculation for an unlabeled full binary RP-tree with 5 leaves.

•
•

•
•
•
•

•
•
•

•
•
•

•
•
•

•
•
• •
•
•

Figure 9.9 The 8-leaf unlabeled full binary RP-tree of rank 250.

Figure 9.8 shows how (9.5) is used to compute rank. Each of the equations given there is a
special case of (9.5). The first equation gives the rank of the tree we are interested in. The other two
equations give ranks that are needed because of the recursive nature of (9.5). One can now work
from the bottom up using RANK(•) = 0 to get ranks of 0, 1 and 8, respectively.

As always, unranking uses a greedy algorithm. Let UNRANK(R, n) denote the n-leaf full binary
RP-tree with rank R. Let’s compute UNRANK(250, 8), the 8-leaf full binary RP-tree with rank 250.
Being greedy, we want T1, the left principal tree to have as many leaves as possible. We have

b1b7 + b2b6 + b3b5 + b4b4 = 227

and

b1b7 + b2b6 + b3b5 + b4b4 + b5b3 = 227 + 28 > 250.

Thus the first principal tree, T1, has five leaves and the second, T2, has three. Now we want RANK(T1)
to be as large as possible. Since RANK(T1)b3+RANK(T2) = 250−227 = 23 and 23/b3 = 23/2 = 11.5,
T1 has rank 11 and T2 has rank 23−11b3 = 1. Thus T1 = UNRANK(11, 5) and T2 = UNRANK(1, 3).
We’ll compute T2 first. We have b1b2 = 1 and b2b1 = 1, so the first principal subtree of T2 has two
leaves and the second has one. Since there is only one 2-leaf tree and only one 1-leaf, we are done
with T2. Since b1b4 + b2b3 + b3b2 = 9, the first principal subtree of T1 has four leaves and rank 2
while the second has one leaf. Since b1b3 = 2, both principal subtrees of this 4-leaf tree have two
leaves. Putting this all together, we get the tree shown in Figure 9.9.

Example 9.12 Computing the rank without recursion In Example 9.11 (p. 261) we proved
the recursive formula (9.5) for the rank of an unlabeled full binary RP-tree. This formula can be
implemented as it stands by a recursive computer program; however, recursive procedures can be
inconvenient for hand calculations. We can implement the formula by a depth first postorder vertex
traversal of the tree that we want to rank.

The last time we visit a vertex, we simply record the rank and number of leaves in the subtree
which has that vertex as its root. If we are at a leaf, the rank is 0 and the number of leaves is 1.
Suppose we have reached some tree T that is not a leaf. In the notation of (9.5) we have available
RANK(T1), |T1|, RANK(T2) and |T2|. From this we can compute RANK(T) using (9.5) because
n = |T1| + |T2|. The values of the bi’s can be computed ahead of time and written in a table.
Figure 9.10 applies this idea to the tree in Figure 9.9. Rather than work in depth first postorder, we
can simply do the vertices depth by depth, starting at the lowest depth.

264 Chapter 9 Rooted Plane Trees

•

• •

• • • •

• • • •

1:0 1:0 1:0 1:0

•

• •

• • • •

2:0 2:0 1:0 1:0

•

• •

4:2 1:0 2:0 1:0

•

5:11 3:1

8:250

Figure 9.10 Computing the rank of the tree in Figure 9.9. As we move up in the tree, we replace a vertex v
with L: R where R is the rank of the subtree rooted at v and L is how many leaves it has. When information
is no longer needed, we discard it to keep the figures from getting cluttered.

Example 9.13 Calculating statistics for RP-trees When RP-trees are used as data struc-

tures, items of data may be stored at the leaves and an “action” such as finding an item in a list

may involve finding the appropriate leaf by traversing the path from the root to the leaf. How fast
can data in such a tree be accessed?

The tree is being used as a decision tree and the number of decisions needed to reach the leaf

equals the length of the path. Thus, the time needed to find an item this way is usually nearly

proportional to the length of the path traversed. Given an RP-tree T , the length of the longest path

from the root to a leaf, m(T), say, and the average over all leaves of the lengths of the paths, µ(T),
say, are therefore important measures of how good the tree is for storing data. Worst case (i.e.,

longest) time is proportional to m(T) and average time to µ(T).

Given a particular tree T , we could calculate m(T) and µ(T). Suppose we are told that the

algorithm for creating the data structure constructs a random tree from some class; e.g., the set of
n-leaf unlabeled full binary RP-trees. How can we get information about µ(T) in this case? Here are

some possible approaches assuming we are dealing with unlabeled full binary RP-trees.

• Average over all: We might try to compute the average value of µ(T) over all such trees, provided
we have a way to list all of them. Call the average value µ(n). We could then compute µ(T) for

each tree T and average the results to obtain µ(n). If we are lucky enough to have an unranking

algorithm, we can list all the trees using UNRANK(i, n) for i = 0, 1, . . . , bn − 1. Unfortunately, bn

is much too large for realistic values of n, so the program would take too long to run.

• Generate some at random and average: Another method is to generate n-leaf unlabeled full binary

RP-trees at random by the method mentioned at the start of Section 3.2: Choose a random

integer in [0, bn), unrank it and study the result. Repeat this procedure many times to get a

good estimate. Choosing many elements from a set at random and studying them is known as
the Monte Carlo method or Monte Carlo simulation. Studying it would take us too far afield.

• Use generating functions: We might try to find a theoretical tool. Indeed, we’ll be able to compute

µ(n) using generating functions (Exercise 11.2.16 (p. 329)). Theoretical methods can be wonder-

ful when they work, but they have a nasty habit of not working when we change the problem.
For example, our method will not give us the average of m(T), the length of the longest path

to the root. It can be estimated theoretically, but it is far more difficult than determining the

average of µ(T).

Suppose we are looking at structures where we don’t have an unranking algorithm and we can’t
afford to list all of them. It appears that we must use generating functions. This is not necessarily the

case. Suppose that we have an unranking algorithm for a set that contains the one we are interested

in and is not too much larger. We can use that algorithm, rejecting completely those structures that

lie outside the set of interest. Here is a general pseudocode procedure for this method.

9.3 Unlabeled Full Binary RP-Trees 265

Procedure ESTIMATE(setsize,ncases,parameters)

Initialize

/* Loop to generate ncases examples. */

For i = 1, 2, . . . , ncases:

/* Need a case in set of interest. */

Set needcase to true

While needcase is true:

Choose a random integer j ∈ [0, setsize)

T = UNRANK(j, parameters)

If T is okay, then set needcase to false

End while

Store information about T as desired

End for

Finish it up: calculate and output concluding information

End

We will not study such algorithms in this text.

Exercises

9.3.1. Using Definition 9.1, recursively construct all unlabeled RP-trees with at most 4 vertices. Note that
you are not supposed to simply list them. You should iterate the definition and retain all trees of at
most 4 vertices that arise. When the list does not change during an iteration, it is complete.
Note: You are asked for all trees, not just the binary ones.

9.3.2. Using Definition 9.4, recursively construct all unlabeled full binary RP-trees with at most 4 leaves.

9.3.3. Construct a table of bn for n ≤ 10.

9.3.4. Compute the ranks of the unlabeled full binary RP-trees shown here.

•
•

•
•
•
•
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•

•
•

•
•
•
•
•
•
•

•
•
•
•
•
•

9.3.5. Construct the unlabeled full binary RP-trees with eight leaves whose ranks are 100, 200, 300 and
400.

9.3.6. Prove that a full binary RP-tree with n leaves has n − 1 other vertices.

9.3.7. We are interested in the unlabeled full binary RP-tree with n leaves and rank bn/2; i.e., the tree just
past the middle of the list. Call the tree Mn.

(a) Construct M3, M5 and M7.

(b) Conjecture and prove the nature of Mn when n is odd.

(c) Conjecture and prove the nature of Mn when n is even.

9.3.8. Provide a recursive method for calculating the rank of a decreasing function in lex order.

9.3.9. Use equivalence relations to provide a formal definition for unlabeled RP-trees in terms of labeled
RP-trees.

9.3.10. Provide a recursive method for calculating the lex order rank of a permutation.

266 Chapter 9 Rooted Plane Trees

9.3.11. Let ∗∗ stand for the binary operation of exponentiation. How parentheses are placed in the expression

x∗∗y∗∗z effects the answer. Thus 3∗∗(2∗∗3) = 323

= 38 = 1458 while (3∗∗2)∗∗3 = (32)3 = 36 = 729.
We would like to generate all ways of parenthesizing x1∗∗· · ·∗∗xn. This can be done by first selecting
the last ∗∗ operation to be performed as in

(x1 ∗∗ · · · ∗∗ xk) ∗∗ (xk+1 ∗∗ · · · ∗∗ xn),

and then proceeding recursively on x1 ∗∗ · · · ∗∗xk and xk+1 ∗∗ . . .∗∗xn. (If k = 1 we have simply (x1)
on the left.) The recursion stops when every innermost pair of parentheses contains just one number
as in (xi). Call this final result a “parenthesizing.”

(a) Show that if you remove the xi’s from a parenthesizing, it is possible to tell where they belong.
Thus all we need are the parentheses.

(b) Show that the set of possible parentheses patterns leads to a tree that looks the same as that in
Figure 9.6 with • replaced by () and JOIN(A,B) interpreted as (AB).

(c) It follows from (b) that there is a simple correspondence between the parenthesized expressions
and unlabeled full binary RP-trees. Describe it.

9.3.12. If Ti are unlabeled RP-trees, let [T1, . . . , Tk] denote the unlabeled rooted RP-tree in which the ith
edge from the root leads to the root of Ti. In particular, [] is the tree •. We define a map f from the

unlabeled RP-trees to the unlabeled full binary RP-trees recursively as follows. Let f
(

[]
)

= [] = •
and

f
(

[T1, . . . , Tk]
)

=
[

f(T1), f
(

[T2, . . . , Tk]
)

]

9.6

when k > 0. Pictorially,

f

(•

T1

)

=
•

•T1

and f

(•

T1 T2 Tk...

)

=

•

f(T1)
f

(•

T2 Tk. . .

)

(a) Show that f is a bijection between n-vertex unlabeled RP-trees and n-leaf unlabeled full binary
RP-trees.

(b) Use the above correspondence to find a procedure for ranking and unranking the set of all
n-vertex unlabeled RP-trees. Provide a local description like Figure 9.6.

*9.3.13. In this exercise you will obtain a formula for bn by proving a simple recursion. You might ask “How
would I be expected to discover such a result?” Our answer at this time would be “Luck and/or
experience.” When we study generating functions, you’ll have a more systematic method.

Let Ln be the set of n-leaf unlabeled full binary RP-trees with one leaf marked and let Vn with
the set with one vertex marked.

(a) Prove that Ln has nbn elements and that Vn has (2n − 1)bn elements.

(b) Consider the following operation on each element of Ln+1. If x is the marked leaf, let f be its
father and b its brother. Remove x and shrink the edge between f and b so that f and b merge
into a single vertex. Prove that each element of Vn arises exactly twice if we do this with each
element of Ln+1.

(c) From the previous results, conclude that (n + 1)bn+1 = 2(2n − 1)bn.

(d) Use the recursion just derived to obtain a fairly simple formula for bn.

Notes and References

Books on combinatorial algorithms and data structures usually discuss trees. You may wish to look
at the references at the end of Chapter 6. Grammars are discussed extensively in books on compiler
design such as [1].

1. Alfred V. Aho and Jeffrey D. Ullman, Principles of Compiler Design, Addison-Wesley (1977).

