For a second order equation, homogeneous eqn, if \(y_1, y_2 \) are two linearly independent solutions, then every solution can be written as \(c_1 y_1 + c_2 y_2 \).

Ex. Find all solutions to \(y'' + y = 0 \)

(i.e. \(y'' = -y \))

\(\cos(x), \sin(x) \) are two solutions, so every solution is of the form \(c_1 \cos(x) + c_2 \sin(x) \).

Thm. If \(f, p_1(x) \) and \(p_2(x) \) are continuous, then

\[y'' + p_1y' + p_2 y = f(x), \quad y(x_0) = b_0, \quad y'(x_0) = b, \]

has a unique solution.

Ex. Find all solutions to

\[y'' + y = 0, \quad y(0) = 1, \quad y'(0) = 2 \]

\[y = c_1 \sin(x) + c_2 \cos(x) \]

\[y' = c_1 \cos(x) - c_2 \sin(x) \]

\[1 = y(0) = c_1 \]

\[2 = y'(0) = c_1 \]

\[y = 2 \sin(x) + \cos(x) \]
Ex. Find all solutions to
\[y'' + \frac{1}{x} y' = 1, \quad y(1) = \frac{5}{4} \]

Since there are no \(y \)'s, we can think of this as a first-order equation in \(y' \). It is linear.

Integrating factor is \(e^{\int \frac{1}{x} dx} = e^{\ln(x)} = x \)

\[axy'' + y' = ax \]
\[\frac{d}{dx}(axy') = ax \]

\[axy' = \frac{ax^2}{2} + c_1 \]
\[y' = \frac{ax}{2} + \frac{c_1}{x} \]
\[y = \frac{ax^2}{4} + c_1 \ln(x) + c_2 \]

Is this all of the solutions?

- \(\ln(x), 1 \) both solve the equation \(y'' + \frac{1}{x} y' = 0 \)

They are linearly independent.

So yes (here \(\frac{ax^2}{4} \) is the particular solution).

Now, which of these satisfies \(y(1) = \frac{5}{4} \)?

\[\frac{5}{4} = y(1) = \frac{1}{4} + c_1 \ln(1) + c_2 \]
\[1 = c_2 \]

\[y = \frac{ax^2}{4} + c_1 \ln(x) + 1 \]
"Algorithm" for $y'' + p(x)y' + p_0(x)y = F(x)$, \[\text{[Initial conditions]}\]

1) Find two linearly independent solutions y_1 and y_2 to $y'' + p_1(x)y' + p_0(x)y = 0$

2) Find a single ("particular") solution $g(x)$ to $y'' + p_1(x)y' + p_0(x)y = F(x)$

3) General solution is $C_1y_1 + C_2y_2 + g$

4) Use initial conditions to solve for C_1, C_2

The next section is about step 4.

(2.2) Linear, 2nd order, homogeneous constant coefficients

Let's solve $a_2y'' + a_1y' + a_0y = 0$, $a_2, a_1, a_0 \text{ constants}$.

Guess $e^{\lambda x}$ works for some λ. We'd need

\[a_2 \frac{d^2}{dx^2} e^{\lambda x} + a_1 \frac{d^2}{dx^2} e^{\lambda x} + a_0 e^{\lambda x} = 0\]

\[a_2 \lambda^2 e^{\lambda x} + a_1 \lambda e^{\lambda x} + a_0 e^{\lambda x} = 0\]

\[(a_2 \lambda^2 + a_1 \lambda + a_0) e^{\lambda x} = 0\]

Now solve for λ.