• DO NOT begin working, or even open this packet, until instructed to do so.

• You should be in your assigned seat, unless instructed otherwise by Ed or one of the TAs.

• Enter all requested information on the top of this page, and put your name on the top of every page, in case the pages become separated.

• You may use a two-sided page of notes on this exam.

• You may **not** use your books, additional notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

• **Organize your work**, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.

• **Mysterious or unsupported answers will not receive full credit**. Unless otherwise directed in the statement of the problem, a correct answer, unsupported by calculations, explanation, or algebraic work will receive little or no credit. An incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Total:</td>
<td>40</td>
</tr>
</tbody>
</table>

DO NOT turn this page until instructed to do so
1. Let $A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ and let a, b, c, d be some numbers.

 (a) (7 points) Find A^{-1}.

 (b) (3 points) Solve the equation $A\vec{x} = (a, b, c, d)$. You may answer in terms of a, b, c and d.
2. (10 points) Let \mathbb{P}_2 be the vector space of polynomials with degree at most 2, and let $\mathcal{B} = \{1 + x, 1 + x^2, x + x^2\}$. \mathcal{B} is a basis for \mathbb{P}_2 (and you don’t need to prove this). Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ satisfy $T \left([a_0 + a_1 x + a_2 x^2]_\mathcal{B} \right) = (a_0, a_1, a_2)$. Find the matrix corresponding to T.
3. (10 points) Let A be a matrix which is row-equivalent to
\[
\begin{bmatrix}
1 & 2 & 0 & 3 \\
0 & 0 & 5 & 6 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
and let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^7$ be a linear transformation such that $T(\vec{x}) = \vec{0}$ if and only if $\vec{x} = A\vec{y}$ for some $\vec{y} \in \mathbb{R}^4$. Find the dimension of the range of T.
4. (a) (5 points) Let P be a parallelopiped in \mathbb{R}^3. Suppose that one of its vertices is $(0, 1, 0)$, and the three vertices adjacent to that one are $(0, 1, 2)$, $(1, 1, 1)$ and $(1, 0, -1)$. Find the volume of P.

(b) (5 points) Let A and B be invertible matrices with $\det A = 4$ and $\det B = 2$. Find $\det(A^2B^{-1})$.