1. Let V be the vector space of 1×2 vectors (also known as “row vectors”), with addition and scalar multiplication given by the usual addition and scalar multiplication operations on matrices. Note that if $B \in V$ and A is a 2×2 matrix, then BA is a 1×2 matrix, so it is another element of V. V has a basis $\mathcal{B} = \{[1, 0], [0, 1]\}$.

Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Find a matrix A' such that, for any $B \in V$,

$$A'[B]_\mathcal{B} = [BA]_\mathcal{B}$$

2. Let V be the vector space of functions $\mathbb{R} \to \mathbb{R}$ and let $H = \text{span}\{\sin(x), \cos(x)\}$.

Let $\mathcal{B} = \{\sin(x), \cos(x)\}$.

(a) Explain why \mathcal{B} is a basis for H.

(b) For which values of a, b, c is $\{a \sin(x) + b \cos(x), c \sin(x) + 7 \cos(x)\}$ a basis of H? Hint: Figure out when

$$\{[a \sin(x) + b \cos(x)]_\mathcal{B}, [c \sin(x) + 7 \cos(x)]_\mathcal{B}\}$$

is a basis of \mathbb{R}^2.

1