We can keep doing this until \(n = 0 \).

Now we have \(P(x, y, z) = x y^m + y R(x, y, z) \)

since \(P(0, 0, 1) = 0 \), we have \(n = 0 \)

so \(P(x, y, z) = y R(x, y, z) \)

\(Q(x, y, z) = Q(x, 0, z) + y S(x, y, z) \)

Now \(I_y(P, Q) = I_y(y, Q) + I_y(R, Q) \) by (iv)

\(\) by (vi)

\(I_y(y, Q(x, 0, z)) \)

\(Q(x, 0, z) \) is homogeneous in 2 variables, so it is a product of linear factors in \(x \) and \(z \) (they are independent of \(y \))

so \(I_y(y, Q(x, 0, z)) = \deg Q \) by (v) and (iv)

so \(k = I_y(P, Q) = \deg Q + I_y(R, Q) \)

\(\deg Q > 0 \) so \(I_y(R, Q) < k \)
By the induction hypothesis, \(I_P(R, Q) \) can be computed from (i), \(\ldots \), (vi). So \(I_P(P, Q) \) can also be computed.

Proof of Bezout's theorem:

Choose coordinates so that A, B, C hold.

Then by Lemmas 3.4, 3.7, \(R_{P, Q} = \prod_{i=1}^{e_i} (c_i y - b_i z) \),

where \((b_i, c_i)\) and \((b_j, c_j)\) are not proportional for \(i \neq j\).

Recall: \(\forall i \in R_{P(x_i, b_i, c_i), Q(x_i, b_i, c_i)} = 0 = R_{P, Q}(b_i, c_i) \)

\(\implies \exists! a_i : \forall i \in R_{P(a_i, b_i, c_i), Q(a_i, b_i, c_i)} = 0 \)

We have uniqueness of \(a_i \) because otherwise, we would have \((a_i, b_i, c_i) \& (a'_i, b_i, c_i) \in C \cap D\) are collinear with \((1, 0, 0) = (a_i - a'_i, 0, 0) \)

if \(a_i \neq a'_i \).
We saw in the proof of Theorem 3.18 that
\[I_{(c_{i}, e_{i}, c_{i})} (C, D) = e_{i} \]

By Lemma 3.7, \[\deg R_{p, q} = m_{u} \sum_{i=1}^{k} e_{i} \]
Also, \[\deg R_{p, q} = e_{1} + \cdots + e_{k} = \sum_{i=1}^{k} e_{i} \]
So, \[\sum_{P \in C \cap D} I_{P} (C, D) = \sum_{i=1}^{k} e_{i} = \deg R_{p, q} = m_{u} \]

Lemma 3.24: If \(P \in C \cap D \) is a singular point of \(C \), then \(I_{P} (C, D) > 1 \).