As we saw before, if \(I_p(P, x) \geq 3 \), then
\[y^3 | P(0, y, z) \text{ and } \mathcal{H}_p(x) = 0. \]

The converse: ?

Assume \(\mathcal{H}_p(x) = 0 \), what can we say?

As before, assume \(P = (0, 0, 1) \) and \(L = \{ x = 0 \} \) is tangent to \(C \) at \(P \), so that \(\frac{\partial P}{\partial y}(0, 0, 1) = \frac{\partial P}{\partial z}(0, 0, 1) = 0 \)
and we have \(R_{P, x} = P(0, y, z) \) & \(y^2 | P(0, y, z) \).

Lemma 3.30: Suppose \(m = \deg P > 1 \). Then

\[2 \cdot \mathcal{H}_P(x, y, z) = (m-1)^2 \left[\begin{array}{ccc}
P_{xx} & P_{xy} & P_x \\
P_{yx} & P_{yy} & P_y \\
P_x & P_y & \frac{mP}{m-1}
\end{array} \right] \]

where \(P_{xy} = \frac{\partial^2 P}{\partial x \partial y} \) etc.
Proof: Recall Euler's relation:

\[m \mathbf{P} = x \mathbf{P}_x + y \mathbf{P}_y + z \mathbf{P}_z \]

\[(m-1) \mathbf{P}_x = x \mathbf{P}_{xx} + y \mathbf{P}_{xy} + z \mathbf{P}_{xz} \]
\[(m-1) \mathbf{P}_y = x \mathbf{P}_{yx} + y \mathbf{P}_{yy} + z \mathbf{P}_{yz} \]
\[(m-1) \mathbf{P}_z = x \mathbf{P}_{zx} + y \mathbf{P}_{zy} + z \mathbf{P}_{zz} \]

Multiply the last column by 3 and add \(x\) times the first column plus \(y\) times the second column, then do the same with the rows to obtain the result. \(\square\)

Apply the lemma: At \(p = (0, 0, 1)\) we have

\[0 = \mathcal{H}_P(p) = (m-1)^2 \begin{vmatrix} p_{xx}(p) & p_{xy}(p) & p_{x}(p) \\ p_{yx}(p) & p_{yy}(p) & 0 \\ p_{zx}(p) & p_{zy}(p) & 0 \end{vmatrix} = -(m-1)^2 p_{x} p_{y} \]
So \(\{ \) either \(P_x(p) = 0 \) which means \(p \) is a singular point of \(C \)

or \(P_{yy}(p) = 0 \) which means \(y^3 \mid P(0,y;3) \)

So either \(p \) is a singular point of \(C \)

or \(I_p(C,L) \geq 3 \).

So we have the conclusion: \(\exists \) line \(L \) s.t.

\(I_p(C,L) \geq 3 \implies H_p(p) = 0 \).

i.e., \(p \) is a point of inflexion \(\implies H_p(p) = 0 \)

Remark: Euler's relations for \(P_x, P_y, P_y \) show that if \(p \) is singular on \(C \), we have \(H_p(p) = 0 \).
So we can rephrase the conclusion:

\[C \cap \mathcal{Z}(H_p) = \{ \text{nonsingular points of inflection} \} \cup \{ \text{singular points} \}. \]

First application:

Corollary 3.34: Suppose \(C \) is a nonsingular cubic. Then there coordinates \(\mathcal{F} \) in which the equation of \(C \) is

\[y^2 z = x(x - 3)(x - 2) \]

for some \(\lambda \in \mathbb{C} \setminus \{0, 1\} \).

Proof: By the above \(C \cap \mathcal{Z}(H_p) = \{ \text{points of inflection} \} \).

By Bézout \(C \cap \mathcal{Z}(H_p) \neq \emptyset \) because \(\deg C = 3 \) and \(\deg H_p = 3(m-2) = 3 \).

So \(C \) has at least one point of inflection.

Suppose \(p = (0, 1, 0) \) is a point of inflection of \(C \) and \(\{ z = 0 \} \) is the tangent line to \(C \) at \(p \).
Write \(P(x, y, z) = P(x, 0, z) + y Q(x, y, z) \)

restrict to the line \(z = 0 \): \(P(x, y, 0) = P(x, 0, 0) + y Q(x, y, 0) \)

because \(C \cap L = \{ p \} \) with multiplicity 3 up to a scalar.

\[\Rightarrow Q(x, y, 0) = 0 \Rightarrow y = Q(x, y, 3) \]

\[\Rightarrow \exists \alpha, \beta, r \in \mathbb{C} \text{ s.t. } Q(x, y, 3) = \beta (\alpha x + \beta y + \gamma z) \]

Recap: \(P(x, y, z) = P(x, 0, z) + y \beta (\alpha x + \beta y + \gamma z) \)

\[0 = \frac{\partial P}{\partial z} (0, 1, 0) = \beta \]

replace \(y \) with \(y_1 := y + \frac{\alpha x + \beta y}{\gamma} \)

\[\Rightarrow P(x, y_1, 3) = P(x, 0, 3) + \beta y^2 \gamma \]

\(P(x, 0, z) \) is homogeneous of degree 3 in \((x, z)\) so it is a
product of 3 linear factors, after a change of coordinates, we can assume one of the factors is $-x$:

$$P(x, y, z) = -x(x-a_3)(x-b_3) + y^2 z \quad \text{(replace } z \text{ with } b_3)$$

Another change of coordinates: replace z with az.

$$\Rightarrow P(x, y, z) = -x(x-az)(x-bz) + y^2 z$$

Note: the three linear factors are not proportional: $(a \neq 0)$

If they were, C would be singular.

So $A \in C \setminus \{0, \}$. □