MATH 106
Professor: Elham Izadi
October 24 2019: Solutions to first midterm

(1) (25 points)
(a) Give the definition of \(n \)-dimensional projective space over an arbitrary field \(k \).
(b) Give the definition of the resultant of two homogeneous polynomials in \(n \) variables \(x_1, \ldots, x_n \) with respect to the variable \(x_n \).
(c) Give the definition of the multiplicity at a point of a projective plane curve.
(d) Give the definition of the tangent cone at a point of an affine plane curve.

Solution:
(a) \(n \)-dimensional projective space is the set of lines through the origin in \(k^{n+1} \).
(b) Write
\[
P(x_1, \ldots, x_n) = a_0(x_1, \ldots, x_{n-1}) + \ldots + a_l(x_1, \ldots, x_{n-1})x_n^l,
\]
\[
Q(x_1, \ldots, x_n) = b_0(x_1, \ldots, x_{n-1}) + \ldots + b_m(x_1, \ldots, x_{n-1})x_n^m,
\]
then the resultant is the determinant of the following \((l + m) \times (l + m)\) matrix
\[
\begin{pmatrix}
a_0 & a_1 & \ldots & a_l & 0 & 0 & \ldots & 0 \\
0 & a_0 & \ldots & a_l & a_l & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & a_0 & a_1 & \ldots & a_l \\
b_0 & b_1 & \ldots & b_m & 0 & \ldots & 0 \\
0 & b_0 & \ldots & b_m & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \ldots & \vdots \\
0 & 0 & \ldots & 0 & b_0 & b_1 & \ldots & b_m
\end{pmatrix}
\]
(c) Suppose the curve \(C \) is the zero set of the homogeneous polynomial \(P(x, y, z) \). The multiplicity of \(C \) at a point \((a, b, c) \in C\) is the positive integer \(m \) such that there exists non-negative integers \(i_1, i_2, i_3 \) such that \(i_1 + i_2 + i_3 = m \) and \(\frac{\partial^m P}{(\partial x)^{i_1} (\partial y)^{i_2} (\partial z)^{i_3}}(a, b, c) \neq 0 \) and, for all non-negative integers \(i_1, i_2, i_3 \) such that \(i_1 + i_2 + i_3 < m \), we have \(\frac{\partial^m P}{(\partial x)^{i_1} (\partial y)^{i_2} (\partial z)^{i_3}}(a, b, c) = 0 \).
(d) Suppose \(C \) is the zero set of the polynomial \(f(x, y) \). At a point \((a, b) \in \mathbb{C}^2\), we can write the Taylor expansion of \(f \):

\[
f(x, y) = f(a, b) + \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b) + \ldots + \sum_{i_1 + i_2 = m}^{\partial^m f \over \partial x^{i_1} \partial y^{i_2}} (x - a)^{i_1} (y - b)^{i_2},
\]

where \(m \) is the degree of \(f \). Then the tangent cone to \(C \) is the zero set of the lowest degree non-zero term above.

(2) (25 points)

(a) Prove that a homogeneous polynomial in two variables with complex coefficients is a product of linear factors.

(b) Prove that the resultant in \(x \) of two homogeneous polynomials in \((x, y, z)\) of degrees \(m \) and \(n \) is either zero or homogeneous of degree \(mn \). Deduce that the resultant is either \(0 \) or the product of \(mn \) linear factors.

Solution:

(a) If \(y^d \) is the highest power of \(y \) appearing in a homogeneous polynomial \(P(x, y) \), we can write \(P(x, y) = y^d f \left(\frac{x}{y} \right) \), where \(f \) is the polynomial in one variable with the same coefficients as \(P \). By the fundamental theorem of algebra, the polynomial \(f \) is a product of polynomials of degree 1:

\[
P(x, y) = y^d f \left(\frac{x}{y} \right) = y^d \prod_i \left(a_i \frac{x}{y} - b_i \right) = \prod_i \left(a_i x - b_i y \right).
\]

(b) If \(r_{i,j} \) denotes the entry of the Sylvester matrix on row \(i \) and column \(j \), then the resultant of \(P \) and \(Q \) is

\[
R_{P,Q} = \sum_{\sigma \in \mathfrak{S}_{mn}} \text{sgn}(\sigma) \prod_i r_{i,\sigma(i)}
\]

where \(\text{sgn}(\sigma) \) is the signature of \(\sigma \) as a permutation. The entries \(r_{i,j} \) are the coefficients of \(P \) and \(Q \) as polynomials in \(x \), so they are homogeneous polynomials in \((y, z)\). The degrees \(d_{i,j} \) of the \(r_{i,j} \) as homogeneous polynomials in \((y, z)\) are given by

\[
d_{i,j} = \begin{cases}
m + i - j & \text{if } i \leq n \\
i - j & \text{if } i > n \end{cases}
\]

So the degree of \(\prod_i r_{i,\sigma(i)} \) is

\[
\sum_{i=1}^{n} (m + i - \sigma(i)) + \sum_{i=n+1}^{n+m} i - \sigma(i) = mn + \sum_{i=1}^{m+n} i - \sum_{i=1}^{m+n} \sigma(i) = mn.
\]
So every term of \(R_{P,Q} \) is a homogeneous polynomial of degree \(mn \) in \((y,z)\), hence the same holds for \(R_{P,Q} \).

(3) (26 points)

(a) Prove that any two projective plane curves meet in at least one point.

(b) Deduce that any reducible projective plane curve is singular.

Solution:

(a) Suppose that \(C \) is the zero set of the homogeneous polynomial \(P(x, y, z) \) of degree \(m \geq 1 \), and \(D \) is the zero set of the homogeneous polynomial \(Q(x, y, z) \) of degree \(n \geq 1 \). Then, by the previous question, the resultant \(R_{P,Q} \) is either zero or a product of \(mn \geq 1 \) linear factors:

\[
R_{P,Q}(y, z) = \prod_{i=1}^{mn} (c_iy - b_iz).
\]

In either case, we have \(R_{P,Q}(b_1, c_1) = 0 \). We know that, for two polynomials \(A, B \) in one variable, \(R_{A,B} = 0 \) if and only if \(A \) and \(B \) have a common root. Since \(R_{P,Q}(b_1, c_1) = R_P(x, b_1, c_1), Q(x, b_1, c_1) \), we deduce that the polynomials in one variable \(P(x, b_1, c_1), Q(x, b_1, c_1) \) have a common root. So there exists \(a_1 \in \mathbb{C} \) such that \(P(a_1, b_1, c_1) = Q(a_1, b_1, c_1) = 0 \). This means \(C \) and \(D \) have at least one point in common.

(b) A plane curve is reducible when it is defined by a reducible polynomial (with no repeated factors), say \(P_1P_2 \). So \(C = C_1 \cup C_2 \) where \(C_i \) is the zero set of \(P_i \). By part (a), the two curves have at least one point in common, say \((a, b, c)\). At such a point, all the partials of \(P \) are zero. For instance:

\[
\frac{\partial P}{\partial x}(a, b, c) = \frac{\partial P_1P_2}{\partial x}(a, b, c) = P_2(a, b, c) \frac{\partial P_1}{\partial x}(a, b, c) + P_1(a, b, c) \frac{\partial P_2}{\partial x}(a, b, c) = 0.
\]

(4) (24 points) Find the singular points of the following projective plane curve. Determine their multiplicities and tangent cones.

\[
f(x, y, z) = x^3yz - x^5 - y^5 = 0.
\]

Solution:

To find the singular points, we set all partial derivatives equal to 0:

\[
\frac{\partial f}{\partial z} = x^3y = 0
\]
means either $x = 0$ or $y = 0$. Next, if $x = 0$, then

$$\frac{\partial f}{\partial y} = x^3 z - 5y^4 = 0$$

implies that $y = 0$. Similarly, if $y = 0$, then

$$\frac{\partial f}{\partial x} = 3x^2 y z - 5x^4 = 0$$

implies $x = 0$. Hence the only singular point is $(0, 0, 1)$. To find the tangent cone, we look in the affine plane $z = 1$:

$$f(x, y, 1) = x^3 y - x^5 - y^5.$$

From the above equation it is clear that the first nonzero homogeneous piece of the Taylor expansion of $f(x, y, 1)$ at the point $(0, 0)$ is $x^3 y$. So the multiplicity of $(0, 0, 1)$ on C is 3 and the tangent cone at $(0, 0, 1)$ is the union of the two lines of equations $x = 0$ and $y = 0$.