(1) (26 points) Let M and N be two surfaces and $F : M \to N$ a differentiable map. Let p be a point of M and $T_p M$ the tangent plane to M at p.

(a) Give the definition of the differential of F at p.

(b) Give the definition of the exponential map $\exp_p : T_p M \to M$.

(c) Give the definition of a normal neighborhood of p.

(d) Give the definition of a geodesic polar parametrization.

Solution:

(a) Let $v \in T_p M$ be a tangent vector.

Let $\alpha(t) = \varphi(u(t), v(t))$ be a curve in M such that, $\alpha(0) = p$, $\alpha'(0) = v$. The composition $\beta(t) = F(\alpha(t))$ is then a curve in N and we define

$$F_*(v) := \beta'(0) = \frac{d}{dt} F(\alpha(t))|_{t=0}.$$

(b) Let v be a tangent vector to M at p and let γ_v be the unique geodesic with $\gamma_v(0) = p, \gamma_v'(0) = v$. Choose v small enough so that γ_v is defined on the interval $[-1, 1]$. Then we define

$$\exp_p(v) := \gamma_v(1).$$

(c) A normal neighborhood is the image \mathcal{N}_ε of the disc D_ε of radius ε and center 0 by the exponential map, provided that the exponential map is a diffeomorphism from D_ε to \mathcal{N}_ε.

(d) Choose a basis $\{e_1, e_2\}$ of $T_p M$. The map

$$\varphi(u, v) := \exp_p(u \cos ve_1 + u \sin ve_2) = \gamma_{u \cos ve_1 + u \sin ve_2}(1) = \gamma_{u \cos ve_1 + u \sin ve_2}(u)$$

is called a geodesic polar map.

(2) (24 points) Prove that for a geodesic polar parametrization $\varphi(u, v)$ of M with pole p, we have $E = 1, F = 0$ everywhere and $G > 0$ everywhere except at p.

Solution: From the definition of the exponential map, we have $E = \varphi'_u \varphi_u = \gamma'_{\cos ve_1 + \sin ve_2}(u)$.

$\gamma'_{\cos ve_1 + \sin ve_2}(u) = 1$ because $\gamma_{\cos ve_1 + \sin ve_2}(u)$ is a unit speed geodesic. Furthermore, since
\(\varphi(u, v_0) = \gamma_{\cos v_0 e_1 + \sin v_0 e_2}(u) \) is a unit speed geodesic, \(\varphi_{uu} \) (the acceleration vector) is normal to \(M \) everywhere. In particular, \(E_v = \varphi_u \cdot \varphi_{uv} = 0 \) and \(\varphi_{uu} \cdot \varphi_v = \varphi_{uu} \cdot \varphi_u = 0 \). Next

\[F_u = (\varphi_u \cdot \varphi_v)_u = \varphi_{uu} \cdot \varphi_v + \varphi_u \cdot \varphi_{uv} = 0. \]

So \(F \) is constant on each \(u \)-parameter curve. Since \(\varphi(0, v) = p \) for all \(v \), we have \(\varphi_v(0, v) = 0 \) for all \(v \), hence \(F(0, v) = 0 \) and \(F \) is zero everywhere. Finally, since we have a coordinate chart away from \(p \), the length \(|\varphi_v| = \sqrt{G} > 0 \), so \(G > 0 \).

3. (25 points)

(a) For the cone \(z^2 = 4x^2 + y^2 \), write a ruling parametrization of the form \(\beta(u) + v\delta(u) \).

(b) Do the same for the cylinder \(x^2 + y^2 = 4 \).

(c) Find all the geodesics on the cylinder \(x^2 + y^2 = 4 \) in parametric form.

Solution:

(a) Every line in the cone goes through the origin. If we cut the cone with the circle at \(z = 1 \), we obtain vectors parallel to each line: \(((\cos u)/2, \sin u, 1) \). So a parametrization would be

\[\varphi(u, v) = v((\cos u)/2, \sin u, 1). \]

(b) For the cylinder, all lines are parallel to \((0, 0, 1) \) and they go through points on the circle \(x^2 + y^2 = 4, z = 0 \). So a parametrization would be

\[\varphi(u, v) = 2(\cos u, \sin u, 0) + v(0, 0, 1). \]

(c) First note that in the parametrization above \(\varphi_u = (-2\sin u, 2\cos u, 0), \varphi_v = (0, 0, 1) \) So \(E = 4, F = 0, G = 1 \). Let \(\alpha(t) = \varphi(u(t), v(t)) = (2\cos u(t), 2\sin u(t), v(t)) \) be a unit speed geodesic on the cylinder. Then the geodesic equations give us

\[u'' = v'' = 0 \]

So \(u(t) = at + b, v(t) = ct + d \) for some constants \(a, b, c, d \).

4. (25 points) Recall that a ruled surface \(M \) is developable if it has a parametrization \(\varphi(u, v) = \beta(u) + v\delta(u) \) such that the unit normal \(U \) is independent of \(v \). Recall that \(M \) is developable if and only if its Gaussian curvature is 0.

(a) Write two different ruling parametrizations for the saddle surface \(z = xy \) to show that it is doubly ruled.

(b) Is the saddle surface developable?
Solution:

(a) A parametrization of the surface is $\varphi(u, v) = (u, v, uv)$. So one ruling is

$$
\varphi(u, v) = (u, 0, 0) + v(0, 1, u).
$$

Another parametrization is $\varphi(u, v) = (v, u, uv)$. So another ruling is

$$
\varphi(u, v) = (0, u, 0) + v(1, 0, u).
$$

(b) For the first parametrization we have $\varphi_u = (1, 0, v), \varphi_v = (0, 1, u), \varphi_{uu} = 0 = \varphi_{vv}, \varphi_{uv} = (0, 0, 1)$. A normal to the surface is $N = (y, x, -1)$. So we see that $m = \varphi_{uv} \cdot U \neq 0$ and the Gaussian curvature is not 0. Hence the surface is not developable.