(1) A ruled surface \(\varphi(u,v) = \beta(u) + v\delta(u) \) is developable if its unit normal \(U \) is constant along the rulings, i.e., \(U_v = 0 \). Show that a ruled surface is developable if and only if its Gauss curvature is 0.

(2) Without using the previous exercise show that cones and cylinders are developable.

(3) Let \(M \) be a surface and \(p \) and \(q \) two points on \(M \). Let \(\alpha \) be a piecewise regular curve on \(M \) from \(p \) to \(q \). Prove that if \(\alpha \) has the shortest length of all curves from \(p \) to \(q \) on \(M \), then \(\alpha \) is a geodesic.

Hint: One can define a distance on \(M \) by letting the distance between two points be the length of the shortest curve joining them. To show that \(\alpha \) has no corners, use the following result: given \(p \in M \), there exists \(\epsilon = \epsilon_p > 0 \) such that every point \(q \) of distance \(\epsilon \) from \(p \) has a normal neighborhood of radius \(\epsilon \) (you can find a proof in DoCarmo’s book).

(4) For a non-unit speed curve \(\alpha(t) \) with speed \(\nu(t) \), prove that

\[
\alpha'' = \nu'T + \kappa_g\nu^2U \times T + (\alpha'' \cdot U)U
\]

where \(\kappa_g \) is the geodesic curvature of \(\alpha \).