First series of examples: Hilbert schemes of points.

S: a compact complex manifold of dim. 2

S^r: the r-th Cartesian power of S

$S^{(r)} := S^r / S^r_n$ the r-th symmetric power of S

The action of S^r_n is not free everywhere.

Δ: the diagonal of S^r where the i-th and j-th components are equal.

A general point $(x_1, \ldots, x_i, x_i, x_{i+1}, \ldots, x_j, \ldots, x_n) \in \Delta$

has stabilizer $(ij) \in S_n$

$\text{codim } \Delta_j = 2$ in S^r.

\[\pi: S^r \to S^{(r)} \] is the quotient morphism.

By the purity of the ramification loci of a morphism of smooth varieties, \(S^{(r)} \) is singular along \(\pi(U \Delta_{ij}) =: D \). The diagonal of \(S^{(r)} \) is irreducible.

We desingularize \(S^{(r)} \): \(S^{[r]} := \) the Hilbert scheme of length \(r \) artinian subschemes of \(S \) \\
\(\varepsilon: S^{[r]} \to S^{(r)} \) \\
\(Z \to \) underlying cycle of \(Z \)
For any distinct points x_1, \ldots, x_n in an Artinian subscheme of X of length n supported on x_1, \ldots, x_n and the cycle associated with it is $x_1 + \cdots + x_n$.

So, $\epsilon : S^{(n)} \setminus \epsilon^{-1}(D) \to S^{(n)} \setminus D$ is an isomorphism.

Let D^\times be the open subset of D of points where exactly 2 coordinates are equal.

Given $2x_1 + x_2 + \cdots + x_{n-1} \in D^\times$, to specify an Artinian subscheme of length n with cycle $2x_1 + \cdots + x_n$, we need to specify a tangent line to S at x_1.
So the set ofartinian subschemes with cycle
\[2x_1 + \ldots + x_n\] is naturally identified with \(\mathbb{P}^{T_1} S \).

Let \(\mathcal{S}^{(n)}_* \) be an open subset of points where at
most two of the coordinates coincide.

Let \(\mathcal{S}^{(n)}_* \) be the inverse image of \(\mathcal{S}^{(n)}_* \).

The fibers of the map \(E: \mathcal{S}^{(n)}_* \to \mathcal{S}^{(n)}_* \)
along \(D_* \) are naturally identified with \(\mathbb{P}^{T_1} x \in S \).

One can prove:

Theorem 1: \((\mathcal{S}^{(n)}_*, D_*)\) is locally isomorphic

(as a complex analytic space) to
(2) \(S^{(n)}_x = \text{the blow up of } S^{(n)}_x \text{ along } D_x \)

(3) Also, if \(\text{Bl}_\Delta (S^*_x) \) is the blow up of \(S^*_x \) along the union of the diagonals, then the action of \(G^* \) lifts to \(\text{Bl}_\Delta (S^*_x) \), and

\[
S^{[n]}_x = \frac{\text{Bl}_\Delta (S^*_x)}{G^*}
\]

So we have the pull-back diagram:

\[
\begin{array}{ccc}
\text{Bl}_\Delta (S^*_x) & \xrightarrow{\eta} & S^{(n)}_x \\
\downarrow & & \downarrow \\
S^{[n]}_x & \xrightarrow{\varepsilon} & S^{(n)}_x
\end{array}
\]
Given a holomorphic form ω on S, we obtain holomorphic forms $\pi_i^* \omega$ on S_i.

$\psi := \pi_1^* \omega + \cdots + \pi_n^* \omega$ is invariant under the action of G_n. The pull-back of ψ to $\text{Bl}_A(S^n)$ is also invariant under the action of G_n, so $\exists \varphi$ on $S^{[n]}$ s.t. $\varphi^* \psi = \varphi^* \varphi$.

Proposition: If K_S is trivial, then $S^{[n]}$ admits a holomorphic symplectic form.

Proof: Let ω be a generator of K_S; then we have φ and φ as above. We need to show that φ extends to $S^{[n]}$ as an everywhere non-degenerate form.
This means $\nu^* \varphi$ doesn't vanish anywhere.

ν extends to all of S^∞ because $S^\infty \setminus S^\infty_*$ has codim. ≥ 2.

$\nu^* \varphi$ is a section of K_{S^∞}, so the locus where it vanishes is a canonical divisor.

The morphism $\text{Bl}_\Delta (S^\infty_*) \longrightarrow S^\infty_*$ is ramified along the exceptional divisors $E_{ij} = \text{inverse image of } \Delta_{ij}$.

$$K_{\text{Bl}_\Delta (S^\infty_*)} = \nu^* K_{S^\infty} + \sum_{i < j} E_{ij}.$$

$$\text{div.} (\nu^* \Lambda^\infty \varphi) = \nu^* \text{div} \Lambda^\infty \varphi + \sum_{i < j} E_{ij}.$$

However $$\text{div} (\nu^* \Lambda^\infty \varphi) = \text{div} (\eta^* \Lambda^\infty \varphi) = \sum_{i < j} E_{ij}.$$
because: $\nabla \eta^* \psi = \eta^* \nabla \psi = \eta^* \mathbf{L}$

so $\text{div} \left(\rho^* \nabla \psi \right) = 0 \Rightarrow \text{div} \nabla \psi = 0 \quad Q.E.D.$