Def: Suppose given a manifold M and a differentiable curve α in M s.t. $\alpha(0) = p$. Let $D \alpha$ be the set of differentiable functions from a neighborhood of $p \in M$ to \mathbb{R}. The tangent vector at p to α is the operator on D which to a function f associates:

$$\frac{d}{dt}(f \circ \alpha) \bigg|_{t=0}$$

In other words: $\alpha'(0)(f) = \frac{d}{dt}(f \circ \alpha) /_{t=0}$

Example: $M = \mathbb{R}^n$, $\alpha : (-\varepsilon, \varepsilon) \to M$

$\gamma = 0 = (0, \ldots, 0)$, $\alpha(0) = 0$.

$\alpha(t) = (x_1(t), \ldots, x_n(t))$, $t \in (-\varepsilon, \varepsilon)$

$f : U \to \mathbb{R}$, $0 \in U \subset \mathbb{R}^n$

$q \in U$, $f(q) = f(x_1, \ldots, x_n)$, $q = (x_1, \ldots, x_n)$.
\[x'(0)(f) = \frac{d}{dt} (f(x(t))) \bigg|_{t=0} = \frac{d}{dt} \left(f(x_1(t), \ldots, x_n(t)) \right) \bigg|_{t=0} \]

Chain rule:
\[\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (x_i(0)) \]

Directional derivative of \(f \) in the direction of \((x'_1(0), \ldots, x'_n(0)) \)

On a general manifold \(M \):
\[\forall \, \mathbf{f} \in M \exists \, \psi : U \subset M \ni \mathbf{f} \in U \subset \mathbb{R}^n \text{ coordinate chart.} \]

A tangent vector is the velocity vector of some curve \(\mathbf{x} : (-\varepsilon, \varepsilon) \rightarrow M \) s.t. \(\mathbf{x}(0) = \mathbf{f} \).

Take \(\varepsilon \) small enough s.t. the image of \(\mathbf{x} \) is contained in \(U \).
\[\forall \psi \in \mathcal{F}(U) \]
\[\psi_*(\psi^{-1}(q)) = (x_1, \ldots, x_n) \in \mathbb{R}^n \]

\(f : \text{some neighborhood of } f \rightarrow \mathbb{R} \)

shrink \(U \) if necessary so that

\[f : \psi(U) \rightarrow \mathbb{R} \]

\[\alpha'(0)(f) = \frac{d}{dt} (f \circ \alpha)(t) \bigg|_{t=0} \]

\[f(\alpha(t)) = f(\psi(x_1(t), \ldots, x_n(t))) \]

\[\alpha(t) \in \psi(U) \]

\[\psi^{-1}(\alpha(t)) = (x_1(t), \ldots, x_n(t)) \]

\[f(\alpha(t)) = f(\psi(\psi^{-1}(\alpha(t)))) \]

\[= f\left(\psi(x_1(t), \ldots, x_n(t))\right) \]

\[= (f \circ \psi)(x_1(t), \ldots, x_n(t)) \]

\[\frac{d}{dt} (f \circ \alpha(t)) \bigg|_{t=0} = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} (f \circ \psi)(0) x_i'(0) \]

So \(\alpha'(0) \) has the coordinates \((x_1'(0), \ldots, x_n'(0))\) in the chart \(\psi : U \rightarrow \mathbb{M} \).
\[\frac{\partial}{\partial x^i} \] is the velocity vector of the coordinate curve \(\lambda(t) = \left(0, \ldots, t, 0, \ldots\right) \) \(i \text{-th} \)

Then \(\lambda'(0) = \sum_{i=1}^{n} x_i'(0) \frac{\partial}{\partial x^i} \)

for arbitrary \(\lambda \).

This description shows that \(T_p M \) is a vector space \(\cong \mathbb{R}^n \).

In each chart \(\varphi : U \to M \), the vectors \(\frac{\partial}{\partial x^i} \) form a basis of \(T_p M \).

Differentials of maps:

Def: Suppose given two manifolds \(M_1, M_2 \) and a differentiable map \(a : M_1 \to M_2 \).

Given \(f \in C^\infty(M_1) \), the differential of \(a \) at \(p \) is a linear map \(da : T_p M_1 \to T_{a(p)} M_2 \) defined as follows:
Given a function \(f \) defined on a neighborhood of \(q(h) \) in \(M_2 \),

\[
(d\alpha)(f)(x) := \left(\frac{d}{dt} \right)(f \circ \alpha)(\alpha(t)) \bigg|_{t=0}
\]

In coordinate charts:

\(\alpha : M_1 \rightarrow M_2 \) \(\dim M_1 = m, \dim M_2 = n \)

\(\psi \in V \subseteq \mathbb{R}^m \) \((x_1, \ldots, x_m) \)

\(\alpha(t) \in V \subseteq \mathbb{R}^n \) \((y_1, \ldots, y_n) \)

\(T_{\alpha(q)}M_1 = \left\langle \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_m} \right\rangle \)

\(T_{\alpha(q)}M_2 = \left\langle \frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n} \right\rangle \)

\(\nu \in T_{\alpha(q)}M_1 \), \(\alpha : (-\varepsilon, \varepsilon) \rightarrow M_1 \),

s.t. \(\alpha(0) = q \), \(\alpha'(0) = \nu \)

\(\psi : U \rightarrow M_1 \), \(\psi : V \rightarrow M_2 \)
\[
\begin{align*}
\frac{d}{dt} f^a(x) (t) \bigg|_{t=0} &= \sum_{j=1}^n \left(\frac{\partial}{\partial y_j} \right) f^a(0) \sum_{i=1}^m \frac{\partial y_j}{\partial x_i} \left(\frac{\partial}{\partial x_i} \right) x^i(0) \\
\frac{d}{dt} \left(\frac{\partial}{\partial y_j} \right) f^a(0) &= \sum_{i=1}^m \frac{\partial y_j}{\partial x_i} \left(\frac{\partial}{\partial x_i} \right) x^i(0) \\
\end{align*}
\]

So \((da)(x^i(0), \ldots, x^m(0)) = \sum_{j=1}^n \left(\frac{\partial y_j}{\partial x_i} \right) \frac{\partial y_j}{\partial x_i} \left(\frac{\partial}{\partial x_i} \right) x^i(0) \).

So \(da : T^t M_1 \rightarrow T_a(t) M_2 \) has matrix \(\left(\frac{\partial y_j}{\partial x_i} \right)_{1 \leq i \leq m, 1 \leq j \leq n} \) in the bases \(\left\{ \frac{\partial}{\partial x_i} \right\} \) and \(\left\{ \frac{\partial}{\partial y_j} \right\} \).
\[f : \mathcal{V} \rightarrow \mathbb{R}. \]

\[(\partial a)(v) = (\partial a) (\alpha'(0)) \]

\[(\partial a)(v) (f) = \frac{d}{dt} (f \circ a \circ \alpha)(t) \bigg|_{t=0} \]

\[\psi'^{-1}(U) \xrightarrow{\psi} V \xrightarrow{\psi'^{-1}} \text{shrink } U \text{ if necessary} \]

\[\begin{align*}
(1, \ldots, x_n) &\mapsto \psi(1, \ldots, x_n) \\
\quad &\mapsto a(\psi(1, \ldots, x_n)) \\
\quad &\mapsto \psi^{-1}(a(\psi(1, \ldots, x_n))) \\
\quad &\mapsto \begin{pmatrix}
\psi^{-1}(1), \ldots, \\
\vdots \\
\psi^{-1}(n)
\end{pmatrix}
\end{align*} \]

\[f \circ a = f \psi \psi'^{-1} a \]

\[= (f \psi)(1, \ldots, x_n) \]

\[= (f \psi)(\psi(1, \ldots, x_n), \ldots, \psi(n, \ldots, x_n)) \]

\[(f \circ a \circ \alpha)(t) = (f \psi)(\psi(1, \alpha(t), \ldots, x_m(t)), \ldots, \psi(n, \alpha(t), \ldots, x_m(t))) \]
application: \(\varphi_1 : V_1 \to M \) \(\varphi_2 : V_2 \to M \)

\[M_1 = \varphi_1(U_1) \quad M_2 = \varphi_2(U_2) \]

\(\alpha = \varphi_2^{-1} \circ \varphi_1 : V_1 \to V_2. \)

Def: \(\alpha : M_1 \to M_2 \) is a diffeomorphism if \(\alpha \) is differential, \(\alpha \) is a bijection and \(\alpha^{-1} \) is also differential. The map \(\alpha \) is a local diffeomorphism if \(\forall \, p \in M_1 \), \(\exists \) neighborhoods \(U \) of \(p \) in \(M_1 \), \(V \) of \(\alpha(p) \) in \(M_2 \) s.t. \(\alpha|_U : U \to V \) is a diffeomorphism.

Theorem (2.10): If \(\varphi : M_1 \to M_2 \) is a differentiable map, then \(\varphi \) is a local diffeomorphism iff
A \phi \in \mathcal{M}, (\circ \phi) \phi \text{ is an isom.}

\phi \text{ is a local diffeomorphism iff \phi is injective and a local diffeo-
morphism.}