4.3 Sectional curvature

Notation. Here and throughout, let M denote a Riemannian manifold of dimension $n \geq 2$, with metric $\langle \cdot, \cdot \rangle$, and $R : \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{L}(\mathcal{X}(M))$ the curvature operator; for a given $p \in M$, we will abuse notation and write $R : T_p M \times T_p M \to \mathcal{L}(T_p M)$, which makes sense if we extend vectors $v \in T_p M$ to vector fields $V \in \mathcal{X}(M)$ in the usual way. Next, let V be a real vector space (of dimension at least 2) equipped with an inner-product $\langle \cdot, \cdot \rangle$ (differentiating between the two uses of this symbol will be clear from context). Finally, for each $x, y \in V$ denote the area of the parallelogram determined by x and y by

$$|x \wedge y| := \sqrt{|x|^2 |y|^2 - |\langle x, y \rangle|^2}.$$

This notation is not surprising if one is familiar with the wedge product; indeed, we may write $x \wedge y = |x \wedge y| (e_1 \wedge e_2)$ for some orthonormal basis $\{e_1, e_2\}$ for $\text{span}\{x, y\}$. More generally, if $	ext{dim}(V) \geq m \geq 2$, then the wedge product gives $x_1 \wedge \cdots \wedge x_m = |x_1 \wedge \cdots \wedge x_m| (e_1 \wedge \cdots \wedge e_m)$ for some orthonormal basis $\{e_k\}_{k=1}^m$ for $\text{span}\{x_k\}_{k=1}^m$, where $|x_1 \wedge \cdots \wedge x_m|$ denotes the volume of the parallelepiped determined by $\{x_k\}_{k=1}^m$.

Definition. Let $p \in M$ and $V \subset T_p M$ be a two-dimensional subspace. Define $K : V \times V \to \mathbb{R}$ by

$$K(x, y) := \begin{cases} \frac{\langle R(x,y)x, y \rangle}{|x \wedge y|^2} & \text{if } x, y \text{ are linearly independent}, \\ 0 & \text{otherwise}. \end{cases}$$

Proposition (3.1). Let $p \in M$ and $V \subset T_p M$ be a two-dimensional subspace. If $(x, y), (u, v) \in V \times V$ are pairs of linearly independent vectors in V, then $K(x, y) = K(u, v)$.

Proof. First, observe that it is possible to transform the basis $\{x, y\}$ for V into any other basis for V using compositions of the operations

(a) $\{x, y\} \to \{y, x\}$;

(b) $\{x, y\} \to \{\lambda x, y\}$ for some nonzero $\lambda \in \mathbb{R}$;

(c) $\{x, y\} \to \{x + \lambda y, y\}$ for some $\lambda \in \mathbb{R}$.

Hence, it suffices to prove that K is invariant under these operations. To this end, let $x, y \in V$ be linearly independent and note the following:

(a) Clearly, $|y \wedge x| = |x \wedge y|$, and so it suffices to show that $\langle R(y, x)y, x \rangle = \langle R(x, y)x, y \rangle$, which follows by applying part (b) of Proposition (2.5):

$$\langle R(y, x)y, x \rangle = -\langle R(x, y)y, x \rangle = \langle R(x, y)x, y \rangle.$$

1
(b) Suppose \(\lambda \in \mathbb{R} \setminus \{0\} \). Since \(|\lambda x \wedge y| = |\lambda||x \wedge y| \), it suffices to note that \(\langle R(\lambda x, y)(\lambda x), y, z \rangle \) by the bilinearity of \(R \) on \(V \times V \) and linearity of \(R(\cdot, \cdot) \) on \(V \).

(c) Suppose \(\lambda \in \mathbb{R} \). Then we have

\[
|(x + \lambda y) \wedge y|^2 = |x + \lambda y|^2 - |x + \lambda y, y|^2
\]

\[
= (|x|^2 + 2\lambda \langle x, y \rangle + \lambda^2 |y|^2) |y|^2 - (\langle x, y \rangle^2 + \lambda^2 |y|^4 + 2\lambda \langle x, y \rangle |y|^2)
\]

\[
= |x|^2 |y|^2 - |\langle x, y \rangle|^2
\]

and so it remains to show that \(\langle R(x + \lambda y, y)(x + \lambda y), y \rangle = \langle R(x, y)x, y \rangle \). For this, observe that the bilinearity of \(R \) on \(V \times V \) and linearity of \(R(\cdot, \cdot) \) on \(V \) yield

\[
\langle R(x + \lambda y, y)(x + \lambda y), y \rangle = \langle R(x, y)(x + \lambda y), y \rangle + \lambda \langle R(y, y)(x + \lambda y), y \rangle
\]

\[
= \langle R(x, y)x, y \rangle + \lambda \langle R(y, y)x, y \rangle + \lambda^2 \langle R(y, y)y, y \rangle
\]

and, hence, the result follows by applying parts (b) and (c) of Proposition (2.5) to obtain \(\langle R(y, y), y, y \rangle = 0 \) and \(\langle R(y, y)x, y \rangle = \langle R(x, y)y, y \rangle = 0 \).

\[\square\]

Remark. An immediate consequence of Proposition (3.1) is that the value of \(K \) depends only the linear (in)dependence of its arguments and not on the arguments themselves. In particular, \(K \) is constant over the set of pairs of linearly independent vectors in \(V \); we denote this constant value by \(K(V) \).

Definition (3.2). Let \(p \in M \) and \(V \subset T_p M \) be a two-dimensional subspace. The sectional curvature of \(V \) at \(p \) is \(K(V) \).

Sectional curvature is important because of its relationship to the curvature operator \(R \). In particular, for any \(p \in M \), knowing the values \(\{K(V)\}_{V \subset T_p M} \) for all two-dimensional subspaces of \(T_p M \) completely determines \(R \). We make this precise with the following lemma:

Lemma (3.3). Let \(p \in M \) and \(f: T_p M \times T_p M \times T_p M \rightarrow T_p M \) be a tri-linear mapping satisfying

(i) \(\langle f(x, y, z), w \rangle + \langle f(y, z, x), w \rangle + \langle f(z, x, y), w \rangle = 0 \);

(ii) \(\langle f(x, y, z), w \rangle = -\langle f(y, x, z), w \rangle \);

(iii) \(\langle f(x, y, z), w \rangle = -\langle f(x, y, w), z \rangle \);

(iv) \(\langle f(x, y, z), w \rangle = \langle f(z, w, x), y \rangle \)

for all \(x, y, z, w \in T_p M \). For each two-dimensional subspace \(V \subset T_p M \) define

\[
\kappa(V) := \frac{\langle f(x, y, x), y \rangle}{|x \wedge y|^2}
\]
for any pair \((x, y)\) of linearly independent vectors in \(V\). If for each such \(V\) we have \(\kappa(V) = K(V)\), then \(f(x, y, z) = R(x, y)z\) for all \(x, y, z \in T_pM\).

Remark. Before we prove Lemma (3.3), it is necessary to remark that \(\kappa\) is well-defined. Indeed, by the assumptions on \(f\), verifying that \(\kappa\) is constant over the set of pairs of linearly independent vectors in \(V\) is identical to the proof of Proposition (3.1).

Proof of Lemma (3.3). It suffices to prove \(\langle f(x, y, z), w \rangle = \langle R(x, y)z, w \rangle\) for any \(x, y, z, w \in T_pM\). To this end, observe that we have \(\langle f(x, y, y), y \rangle = \langle R(x, y)x, y \rangle\) for all \(x, y \in T_pM\); indeed, for linearly independent \(x\) and \(y\) this follows from the assumptions on \(\kappa\), and for linearly dependent \(x\) and \(y\) it is easy to verify that \(\langle f(x, y, x), y \rangle = 0 = \langle R(x, y)x, y \rangle\). In particular, for any \(x, y, z \in T_pM\), we have \(\langle f(x + z, y, x + z), y \rangle = \langle R(x + z, y)(x + z), y \rangle\) and so by expanding we obtain
\[
\langle f(x, y, x), y \rangle + 2\langle f(x, y, z), y \rangle + \langle f(z, y, z), y \rangle = \langle R(x, y)x, y \rangle + 2\langle R(x, y)z, y \rangle + \langle R(z, y)z, y \rangle,
\]
which simplifies to \(\langle f(x, y, z), y \rangle = \langle R(x, y)z, y \rangle\). Substituting \(y + w\) for \(y\) in this expression, expanding, and rearranging then yields
\[
\langle f(x, y, z), w \rangle - \langle R(x, y)z, w \rangle = \langle f(y, z, x), w \rangle - \langle R(y, z)x, w \rangle,
\]
from which it follows that \(\langle f(x, y, z), w \rangle - \langle R(x, y)z, w \rangle\) is invariant under cyclic permutations of \((x, y, z)\). Applying assumption (i) and part (a) of Proposition (2.5), we therefore have
\[
0 = 3\left(\langle f(x, y, z), w \rangle - \langle R(x, y)z, w \rangle\right);
\]
the desired result is an immediate consequence of this equality.

We now consider the case of constant sectional curvature; that is, for each \(p \in M\), we require that \(K(V) = K(W)\) for all two-dimensional subspaces \(V, W \subset T_pM\). The following proposition (lemma in Do Carmo) provides a characterization of Riemannian manifolds with this property:

Proposition (3.4). Let \(p \in M\) and \(g : T_pM \times T_pM \times T_pM \to T_pM\) be a tri-linear mapping satisfying
\[
\langle g(x, y, z), w \rangle = \langle x, z \rangle \langle y, w \rangle - \langle y, z \rangle \langle x, w \rangle
\]
for all \(x, y, z, w \in T_pM\). Then the sectional curvature at \(p\) is constant (and equal to \(K_0 \in \mathbb{R}\)) if and only if \(K_0 g(x, y, z) = R(x, y)z\) for all \(x, y, z \in T_pM\).

Proof. Before we begin, we observe some simple facts about \(g\):

3
Let $x, y, z, w \in T_pM$. Then

\[
\langle g(x, y, z), w \rangle + \langle g(y, z, x), w \rangle + \langle g(z, x, y), w \rangle \\
= \langle x, z \rangle \langle y, w \rangle - \langle y, z \rangle \langle x, w \rangle \\
+ \langle y, x \rangle \langle z, w \rangle - \langle z, x \rangle \langle y, w \rangle \\
+ \langle z, y \rangle \langle x, w \rangle - \langle x, y \rangle \langle z, w \rangle = 0.
\]

(ii) Let $x, y, z, w \in T_pM$. Then

\[
\langle g(x, y, z), w \rangle = \langle x, z \rangle \langle y, w \rangle - \langle y, z \rangle \langle x, w \rangle = -\left(\langle y, z \rangle \langle x, w \rangle - \langle x, z \rangle \langle y, w \rangle \right) = -\langle g(y, x, z), w \rangle.
\]

(iii) Let $x, y, z, w \in T_pM$. Then

\[
\langle g(x, y, z), w \rangle = \langle x, z \rangle \langle y, w \rangle - \langle y, z \rangle \langle x, w \rangle = -\left(\langle x, w \rangle \langle y, z \rangle - \langle y, w \rangle \langle x, z \rangle \right) = -\langle g(x, y, w), z \rangle.
\]

(iv) Let $x, y, z, w \in T_pM$. Then

\[
\langle g(x, y, z), w \rangle = \langle x, z \rangle \langle y, w \rangle - \langle y, z \rangle \langle x, w \rangle \\
= \langle z, x \rangle \langle w, y \rangle - \langle z, y \rangle \langle w, x \rangle = \langle g(z, w, x), y \rangle.
\]

With these facts in hand, we now prove each implication separately:

(\Rightarrow) Assume that the sectional curvature at p is constant (and equal to $K_0 \in \mathbb{R}$). Then by definition we have $\langle R(x, y)x, y \rangle = K_0|x \wedge y|^2$ for all $x, y \in T_pM$. Since we also have

\[
\langle g(x, y, x), y \rangle = |x|^2|y|^2 - \langle x, y \rangle^2 = |x \wedge y|^2,
\]

it follows that $K_0\langle g(x, y, x), y \rangle = \langle R(x, y)x, y \rangle$; that is

\[
\frac{K_0\langle g(x, y, x), y \rangle}{|x \wedge y|^2} = K_0 = \frac{\langle R(x, y)x, y \rangle}{|x \wedge y|^2},
\]

which is one of the assumptions of Lemma (3.3), provided we take $f := K_0g$. As g (and therefore K_0g) satisfies properties (i)-(iv) above, the remaining assumptions of Lemma (3.3) are also satisfied (with $f = K_0g$), and so applying the lemma yields $K_0g(x, y, z) = R(x, y)z$ for all $x, y, z \in T_pM$, as desired.

(\Leftarrow) Assume that $K_0g(x, y, z) = R(x, y)z$ for all $x, y, z \in T_pM$ and some $K_0 \in \mathbb{R}$. Then, as we have already seen that $\langle g(x, y, x), y \rangle = |x \wedge y|^2$, for any two-dimensional subspace $V \subset T_pM$ and any pair (x, y) of linearly independent vectors in T_pM we have

\[
K(V) = \frac{\langle R(x, y)x, y \rangle}{|x \wedge y|^2} = K_0
\]

and, hence, the sectional curvature at p is constant (and equal to K_0). \qed
Corollary (3.5). Let \(p \in M \) and \(\{e_k\}_{k=1}^{n} \) be an orthonormal basis for \(T_pM \). For each \(i, j, k, \ell \in \{1, \ldots, n\} \), define \(R_{ijk\ell} := \langle R(e_i, e_j)e_k, e_\ell \rangle \). Then the sectional curvature at \(p \) is constant (and equal to \(K_0 \in \mathbb{R} \)) if and only if \(R_{ijk\ell} = K_0(\delta_{ik}\delta_{j\ell} - \delta_{jk}\delta_{i\ell}) \) for all \(i, j, k, \ell \in \{1, \ldots, n\} \), where \(\delta_{ab} \) denotes the Kronecker delta.

Proof. By Proposition (3.4), the sectional curvature at \(p \) is constant (and equal to \(K_0 \)) if and only if
\[
K_0 g(x, y, z) = R(x, y)z \quad \text{for all} \quad x, y, z, w \in T_pM,
\]
where \(g : T_pM \times T_pM \times T_pM \to T_pM \) is a tri-linear mapping satisfying
\[
\langle g(x, y, z), w \rangle = \langle x, z \rangle \langle y, w \rangle - \langle y, z \rangle \langle x, w \rangle \quad \text{for all} \quad x, y, z, w \in T_pM.
\]
Hence, the sectional curvature is constant if and only if
\[
R_{ijk\ell} = \langle R(e_i, e_j)e_k, e_\ell \rangle = K_0 \left(\langle e_i, e_k \rangle \langle e_j, e_\ell \rangle - \langle e_j, e_k \rangle \langle e_i, e_\ell \rangle \right) = K_0(\delta_{ik}\delta_{j\ell} - \delta_{jk}\delta_{i\ell}),
\]
which is the desired result. \(\square \)

Remark. The condition \(R_{ijk\ell} = K_0(\delta_{ik}\delta_{j\ell} - \delta_{jk}\delta_{i\ell}) \) for all \(i, j, k, \ell \in \{1, \ldots, n\} \) is equivalent to having, for each pair \(\{i, j\} \subseteq \{1, \ldots, n\} \), \(R_{iijj} = -R_{ijji} = K_0(1 - \delta_{ij}) \) and \(R_{ijk\ell} = 0 \) for all \(k, \ell \in \{1, \ldots, n\} \setminus \{i, j\} \).

Examples. Suppose the sectional curvature at \(p \in M \) is constant, with value \(K_0 \in \mathbb{R} \). Then, modulo scaling the metric on \(M \), there are only three unique cases to consider:

(1) If \(K_0 = 0 \), then \(M \) is locally isometric to \(\mathbb{R}^n \), \(n \)-dimensional Euclidean space;

(2) If \(K_0 = 1 \), then \(M \) is locally isometric to \(S^n \), the unit \(n \)-sphere;

(3) If \(K_0 = -1 \), then \(M \) is locally isometric to \(\mathbb{H}^n \), \(n \)-dimensional hyperbolic space.

(See Figure 1 below for an illustration when \(n = 2 \).) Riemannian manifolds of constant sectional curvature are sometimes referred to as space forms.

Figure 1. A geodesic triangle. Three points around \(p \in M \) are connected via geodesic curves and projected onto \(\mathbb{R}^2 \). In black, \(M \cong \mathbb{R}^2 \) (\(K_0 = 0 \)); in blue, \(M \cong S^2 \) (\(K_0 = 1 \)); in red, \(M \cong \mathbb{H}^2 \) (\(K_0 = -1 \)).
4.4 Ricci and scalar curvature

The following is a brief introduction to Ricci and scalar curvature. Only basic definitions and results are provided, and all proofs are omitted. The notation of section 4.3 is assumed throughout.

Notation. Let $p \in M$ and $x_0 \in T_p M$ such that $|x_0| = 1$. Denote by $\{x_k\}_{k=1}^{n-1} \subset T_p M$ an orthonormal basis for the hyperplane in $T_p M$ which is orthogonal to $\text{span}\{x_0\}$.

Definition. The Ricci curvature at p in the direction x_0 is defined by

$$\text{Ric}_p(x_0) := \frac{1}{n-1} \sum_{k=1}^{n-1} \langle R(x_0, x_k)x_0, x_k \rangle.$$

Moreover, the scalar curvature at p is defined by

$$S(p) := \frac{1}{n} \sum_{j=0}^{n-1} \text{Ric}_p(x_j) = \frac{1}{n(n-1)} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \langle R(x_j, x_k)x_j, x_k \rangle.$$

Proposition. The Ricci curvature at p in the direction x_0 is independent of the choice of orthonormal basis for the hyperplane in $T_p M$ which is orthogonal to $\text{span}\{x_0\}$. That is, if $\{x_k\}_{k=1}^{n-1}$ and $\{z_k\}_{k=1}^{n-1}$ are two such orthonormal bases, then

$$\sum_{k=1}^{n-1} \langle R(x_0, x_k)x_0, x_k \rangle = \sum_{k=1}^{n-1} \langle R(x_0, z_k)x_0, z_k \rangle.$$

Corollary. The scalar curvature at p is independent of the choice of orthonormal basis for $T_p M$.
