1. Lie bracket

Lemma 5.2 Let \(X, Y \in \Gamma(M) \), then \([X, Y] \in \Gamma(M) \).

Proof. Given \(p \in M \), let \(x : U \to \mathbb{R}^m \) be a coordinate chart. Express \(X, Y \) by the following:

\[
X = a^i \frac{\partial}{\partial x^i}, \quad Y = b^j \frac{\partial}{\partial x^j}
\]

Then for any differentiable function \(f \), we have

\[
XYf = X(b^j \frac{\partial f}{\partial x^j}) = a^i \frac{\partial}{\partial x^i}(b^j \frac{\partial f}{\partial x^j})
\]

\[
= a^i \frac{\partial b^j}{\partial x^i} \frac{\partial f}{\partial x^j} + a^i b^j \frac{\partial^2 f}{\partial x^i \partial x^j}
\]

And

\[
YXf = Y(a^i \frac{\partial f}{\partial x^i}) = b^j \frac{\partial}{\partial x^j}(a^i \frac{\partial f}{\partial x^i})
\]

\[
= b^j \frac{\partial a^i}{\partial x^j} \frac{\partial f}{\partial x^i} + a^i b^j \frac{\partial^2 f}{\partial x^i \partial x^j}
\]

So

\[
[X, Y]f = (XY - YX)f
\]

\[
= a^i \frac{\partial b^j}{\partial x^i} \frac{\partial f}{\partial x^j} + a^i b^j \frac{\partial^2 f}{\partial x^i \partial x^j} - b^j \frac{\partial a^i}{\partial x^j} \frac{\partial f}{\partial x^i} - a^i b^j \frac{\partial^2 f}{\partial x^i \partial x^j}
\]

\[
= (a^i \frac{\partial b^j}{\partial x^i} - b^i \frac{\partial a^j}{\partial x^i}) \frac{\partial f}{\partial x^j}
\]

That is to say, \([X, Y] = (a^i \frac{\partial b^j}{\partial x^i} - b^j \frac{\partial a^i}{\partial x^i}) \frac{\partial}{\partial x^j} \in \Gamma(M) \). This holds for each coordinates of \(M \), so it defines on \(M \). Also note the definition is independent of charts, so it is unique. \(\square \)

5.3 Proposition. If \(X, Y \) and \(Z \) are differentiable vector fields on \(M \), \(a, b \) are real numbers, and \(f, g \) are differentiable functions, then:

(a) \([X, Y] = -[Y, X] \) (anticommutativity),

(b) \([aX + bY, Z] = a[X, Z] + b[Y, Z] \) (linearity),

(c) \([[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 \) (Jacobi identity),

(d) \([fX, gY] = fg[X, Y] + fX(g)Y - gY(f)X \).
Another interpretation of Lie bracket

Next, we will study another way to think about the bracket by "trajectories".

Definition: A curve \(\alpha : (-\delta, \delta) \to M \) where \(\alpha'(t) := \frac{d\alpha(t)}{dt} = X_{\alpha(t)} \) and \(\alpha(0) = q \) is called a trajectory of the field \(X \) that passes through \(q \) for \(t = 0 \).

Theorem: (Fact from ODEs) Given \(X \in \Gamma(M) \) and \(p \in M \). Then there exist a nbh \(U \subset M \) of \(p \), \(\delta > 0 \) and a differentiable mapping \(\varphi : (-\delta, \delta) \times U \to M \) s.t. the curve is the unique that satisfies \(\frac{\partial \varphi}{\partial t} = X_{\varphi(t,q)} \) and \(\varphi(0,q) = q \).

Locally speaking, take coordinates \(x = (x^1, \ldots, x^n) \). Write \(X = a^i(x) \frac{\partial}{\partial x^i} \), and \(x(t) := x(\varphi_t(q)) = x(\alpha_q(t)) \). Then

\[
\frac{dx}{dt}(t) = (a^1(x(t)), \ldots, a^n(x(t)))
\]

With initial condition \(x(0) = x(q) \). We can solve this by using the Picard’s Theorem.

5.4 Proposition. Let \(X, Y \) be differentiable vector fields on a differentiable manifold \(M \), let \(p \in M \), and let \(\varphi_t \) be the local flow of \(X \) in a neighborhood \(U \) of \(p \). Then

\[
[X, Y]_p = \lim_{t \to 0} \frac{1}{t}[Y - d\varphi_t Y]_{\varphi_t(p)}
\]

For the proof, we need the following lemma from calculus.

5.5 Lemma. Let \(h: (-\delta, \delta) \times U \to \mathbb{R} \) be a differentiable mapping with \(h(0,q) = 0 \) for all \(q \in U \). Then there exists a differentiable mapping \(g: (-\delta, \delta) \times U \to \mathbb{R} \) with \(h(t,q) = tg(t,q) \); in particular,

\[
g(0,q) = \frac{\partial h(t,q)}{\partial t} \bigg|_{t=0}.
\]
Proof of lemma. It suffices to define, for fixed t,
\[g(t, q) = \int_0^1 \frac{\partial h(ts, q)}{\partial (ts)} ds \]
and, after changing variables, observe that
\[tg(t, q) = \int_0^t \frac{\partial h(ts, q)}{\partial (ts)} d(ts) = h(t, q). \]

Proof of the Proposition. Let f be a differentiable function in a neighborhood of p. Putting
\[h(t, q) = f(\varphi_t(q)) - f(q), \]
and applying the lemma we obtain a differentiable function $g(t, q)$ such that
\[f \circ \varphi_t(q) = f(q) + tg(t, q) \quad \text{and} \quad g(0, q) = Xf(q). \]
Accordingly
\[((d\varphi_tY)f)(\varphi_t(p)) = (Y(f \circ \varphi_t))(p) = Yf(p) + t(Yg(t, p)). \]

Therefore
\[
\lim_{t \to 0} \frac{1}{t} [Y - d\varphi_tY]f(\varphi_t(p)) = \lim_{t \to 0} \frac{(Yf)(\varphi_t(p)) - Yf(p)}{t} - (Yg(0, p))
= (XYf)(p) - (Y(Xf))(p)
= ((XY - YX)f)(p) = (\{X, Y\}f)(p). \quad \square
\]

3. Partition of Unity

Over a point $p \in V$ where V is a coordinate neighborhood diffeomorphic to an open ball, We can construct a bump function, i.e., $0 \leq f \leq 1$ and
\[f(q) = \begin{cases}
1 & q \in \bar{U} \\
0 & q \notin V
\end{cases} \]
where $\bar{U} \subset V$.

Idea: Given $p \in \mathbb{R}^n$ and and ball $B_r(p)$, Let $U = B_s(p)$ for $s = r/2$, and define $f(q) = \beta(-2|p - q|/r)$ for $q \in \mathbb{R}^n$, where $\beta : \mathbb{R} \to \mathbb{R}$ is given by
\[\beta(t) = \frac{\int_{-\infty}^{t} \alpha(s) ds}{\int_{-2}^{1} \alpha(s) ds} \]
where \(\alpha : \mathbb{R} \to \mathbb{R} \) is the smooth function

\[
\alpha(t) = \begin{cases}
\exp\left(\frac{-1}{(t+2)(1-t)}\right) & t \in [-2, -1] \\
0 & \text{Otherwise}
\end{cases}
\]

A simple computation shows that \(f \) defines above is a bump function.

Remark: This arises the idea of Partition of Unity.

5.6 Theorem. A differentiable manifold \(M \) has a differentiable partition of unity if and only if every connected component of \(M \) is Hausdorff and has a countable basis.

Proof. (sketched) First to show it is Hausdorff. Given two points \(m, m' \in M \) in \(M \), there exists \(\phi_a \) s.t. \(\phi_a(m) \neq 0 \). So \(m \) in a coordinate chart \(U \) which contains the support of \(\phi_a \). If \(m' \in U \), notice that \(U \) is diffeomorphic to an open subset of \(\mathbb{R}^n \), which is Hausdorff, so admits disjoint open neighborhoods. If \(m' \notin U \), \(\phi_a(m') = 0 \). Because \(\phi_a \) is continuous, preimage of open sets are open.

Next show it is second countable.

Lemma: If \(\{U_a\} \) is a chart covering of a connected manifold \(M \). If for each \(a \), there are only countable many \(b \) s.t. \(U_a \cap U_b \neq \emptyset \), then \(M \) has a countable basis.

(Proof of lemma) Note that if \(M \) has a countable atlas, then it is second countable. So for the atlas \(\{U_a\} \), we suffice to show that it admits a countable subcovering. Now let \(B_1 \) is just one of \(\{U_a\} \). And let \(B_2 \) as the union of the sets of \(\{U_a\} \) with a non-empty intersection with \(B_1 \). Inductively, we have \(B_1 \subseteq B_2 \ldots \). Denote \(B = \bigcup B_a \). We claim that \(B = M \). I.e., \(\{B_a\} \) is a countable subcovering. So the lemma is proved.
Now let \(\{\phi_a\} \) be a partition of unity on \(M \) and \(M' \) a component of \(M \). Denote \(C_a = \text{supp} \phi_a \) and because it is locally finite, we have \(C_a \cap C_b = \emptyset \) except for a finite number of supports \(C_b \). Denote \(W_a := \{\phi_a > 0\} \subset U_a \) (so it is also a coordinate domain), and \(V_a = W_a \cap M' \). So \(V_a \) is either \(\emptyset \) or a coordinate domain of \(M' \). Note that \(\{V_a\} \) cover \(M' \) and \(V_a \subset W_a \subset C_a \), \(V_a \cap V_b = \emptyset \) except for a finite number of sets \(V_b \). So by the lemma it admits a countable basis.

Let’s only prove the easier case that \(M \) is compact. For each \(q \in M \), let \(U_q \in \{U_a\} \) and \(\psi_q \) be a bump function s.t. \(\text{supp} \psi_q \subset U_q \). There is a neighborhood \(W_q \) of \(q \) s.t. \(\psi_q(s) > 0 \) for \(s \in W_q \). So \(\{W_q\} \) is an open cover of \(M \). Find a finite subcover \(\{W_{q_1}, \ldots, W_{q_n}\} \). Define \(\varphi_j = \frac{\psi_{q_j}}{\sum \psi_{q_i}} \). We claim this \(\{\varphi_j\} \) is a partition of unity.

Finally, choose index \(\tau(j) \) s.t. \(\text{supp}(\varphi_j) \subset U_{\tau(j)} \) for \(j = 1, \ldots, n \). Now we define \(f_a = \sum_{\tau(j)=a} \varphi_j \), and we directly have

\[
\sum_{\tau(j)=a} f_a = \sum_a \sum_{\tau(j)=a} \varphi_j = \sum_{a} \varphi_j = 1
\]

We claim that \(\{f_a\} \) is subordinate to \(\{U_a\} \). \(\square \)

Remark: If we require each \(f_a \) has compactly support, then the theorem becomes: For a open cover \(\{U_a\} \), there exists \(\{f_a\} \) smooth partition of unity s.t. each support is compact and there exists \(U_a \) s.t. \(\text{supp} f_a \subset U_a \). Why compactness matters? Consider \(M = (0, 1) \) with \(U_1 = (0, 0.8) \) and \(U_2 = (0.2, 1) \). Then \(\text{supp} f_1 + f_2 \) is also compact, but \(M = (0, 1) \) is not compact, contradiction.

References

