Examples of differentiable manifold

October 16, 2019

1 tangent bundle

Given M a manifold of dimension n with charts $\{(X_\alpha, U_\alpha)\}$, want to construct a differentiable manifold TM for which M is a submanifold. The idea of construction would be attaching every point with its tangent space.

Def 2.6 gives the idea of parameterization.

The coordinate charts is $\{(Y_\alpha, U_\alpha \times \mathbb{R}^n)\}$:

$$Y_\alpha(x_1, ..., x_n, u_1, ..., u_n) = (X_\alpha(x_1, ..., x_n), \sum_{i=1}^n u_i \frac{\partial}{\partial x_i}).$$

Proof 1.1 (TM is a differentiable manifold) $(p, v) \in TM$, $\exists U_\alpha, X_\alpha$, such that $p \in X_\alpha(U_\alpha)$. Then $(p, v) \in Y_\alpha(U_\alpha, \mathbb{R}^n)$, i.e. $\{(Y_\alpha, U_\alpha \times \mathbb{R}^n)\}$ covers TM.

Injectivity of Y_α follows from our construction. It remains to show that the charts are compatible. $Y_\alpha(x_1, ..., x_n, u_1, ..., u_n) = Y_\beta(x_1^*, ..., x_n^*, u_1^*, ..., u_n^*)$ would imply $(x_1, ..., x_n) = X_\alpha^{-1}X_\beta(x_1^*, ..., x_n^*)$, $(u_1, ..., u_n) = dX_\alpha^{-1}X_\beta(u_1^*, ..., u_n^*)$. Thus, $Y_\alpha^{-1}Y_\beta$ is differentiable from $U_\beta \times \mathbb{R}^n$ to $U_\alpha \times \mathbb{R}^n$.

2 Regular manifold in \mathbb{R}^n

Regular manifold M in \mathbb{R}^n is a generalization of regular surface in \mathbb{R}^3. Firstly, we are given differentiable maps X_α from $U_\alpha \subset \mathbb{R}^m$ to M. More we require $(dX_\alpha)_p$ to be injective from \mathbb{R}^m to T_pM. This require that X_α is an immersion from U_α to M, and it require that $m \leq n$. The proof that $\{X_\alpha, U_\alpha\}$ gives an differential structure of M immediately follows from prop 3.7.

3 Level set

Given a differentiable function f from \mathbb{R}^n to \mathbb{R}^m, we would expect the level set to be a differentiable manifold. But in certain cases, it is not a differentiable manifold. One example would be that $f(x, y) = x^2 + y^2 + 1$, and if we require that $f(x, y) = 0$, we get an empty set. Another example would be $f(x, y) = xy$, if we let $f(x, y) = 0$, we would get $x = 0$ or $y = 0$, which is not a differentiable manifold. The first example is bad because f have no preimage for a given value, the second example is bad because in one of the
preimage point, \(df \) is not surjective in \(R^3 \). It is amazing that it is only two of the bad things that makes the level set not a differentiable manifold.

Theorem 3.1 Given a differentiable function \(f \) from \(R^n \) to \(R^m \), if \(a \) satisfies that \(f^{-1}(a) \) is not empty, and \(\forall x \in f^{-1}(a) \), \((df)(x) \) is surjective from \(R^n \) to \(R^m \), then \(f^{-1}(a) \) would be a differentiable manifold.

Remark 3.1 \(a \) is called the regular value of \(f \).

3.1 examples of level set

1. orthogonal group in \(R^n \).

Proof 3.1 \(A \) is orthogonal iff \(A^TA = I \).

Set \(F(x) = x^T x \), \(F \) is a differentiable map from \(R^n \) to \(R^{n^2+n} \).

We want to prove \(I \) is the regular value of \(F \).

\(I^TI = I \), thus \(F^{-1}(I) \) is not empty.

If \(F(A) = I \), \(\forall C \) symmetric, \((dF)_A(CA) = C \), thus we get \((dF)_A \) is surjective.

Remark 3.2 \(\text{Det}(A) = 1 \) and \(\text{Det}(A) = -1 \) gives two connected componet of the manifold. And in the lee’s book in chapter five.([2])

Remark 3.3 For a more generalized version, \(A \) lie Matrix group is a differentiable manifold. see [1]

2. sphere \(f(x, y) = x^2 + y^2 + z^2 = 1 \).

Proof 3.2 \(f(1,0,0) = 1 \).

\(df(x, y, z) = (2x, 2y, 2z) \neq (0, 0, 0), \forall (x, y, z) \) satisfying \(x^2 + y^2 + z^2 = 1 \)

3. torus \(f(x, y, z) = ((x^2 + y^2 - 1)^2 + z^2 = 2 \)

Proof 3.3 \(f(0, 0, 1) = 2 \)

\(df(x, y, z) = (2x - \frac{2x}{\sqrt{x^2+y^2}}, 2y - \frac{2y}{\sqrt{x^2+y^2}}, 2z) \neq (0, 0, 0) \forall (x, y, z) \) satisfying \((\sqrt{x^2+y^2} - 1)^2 + z^2 = 2 \).

3.1.1 proof of level set of regular value is differentiable manifold

Proof 3.4 Note that \(df \) is surjective, informally we can say, \(R^n \) lose some freedom in the mapping of \(f \). And our strategy here is adding more freedom to the image so that we can construct a local diffeomorphism between \(R^n \) to constructed manifold. And the diffeomorphism we construct will give a differentiable charts on the level set.

Wlog, \(\left(\frac{\partial f}{\partial x_j} \right)_{1 \leq i \leq m, 1 \leq j \leq m} \) is not singular at \(x \).

Then \(f(x_1, ..., x_n) = (f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n), x_{m+1}, ..., x_n) \), we would have \((df^*)(x) \) being nonsingular at \(x \).

Then by the inverse function theorem, there is open set \(\Omega \) that diffeomorphic to \(f(x)(\Omega) \). In particular choose \(U_x \) open in \(R^{n-k} \) such that \((a, U_x) \subset \Omega \). Then \(((f_x)^{-1}, (a, U_x)) \) gives a parameterization of \(f^{-1}(a) \). Similar as above, we can prove the level set is a regular manifold.
Remark 3.4 If we go back the proof of every regular submanifold of \mathbb{R}^n is a differentiable manifold, we would get every regular submanifold of \mathbb{R}^n is locally a level set.

4 Orientable manifold

An orientable manifold is a differentiable manifold with orientable differentiable charts (X_α, U_α), such that $\det dX_\alpha^{-1}X_\beta$ have positive determinant in the domain of interest. And we say that every orientable differentiable chart give an orientation on M.

Theorem 4.1 Every orientable manifold have at least orientations

Proof 4.1 Suppose X_α, U_α is an differentiable charts for M, then take P a linear transformation from \mathbb{R}^n to \mathbb{R}^n, and corresponding Matrix with standard basis has negative determinant. Then we can prove that $(X_\alpha \circ P^{-1}, PU_\alpha)$ give an different orientation on M.

Remark 4.1 If the manifold is connected, there exists exactly two orientations. The reader can read chapter 10 in lee’s book.([2])

References
