General definition of tensor.

An \((M, N) \) tensor is a multilinear function \(f : \mathbb{R}^M \times \mathbb{R}^N \to \mathbb{R} \) that assigns a real number to \(M \) one-forms and \(N \) vectors into a real number.

Before a deeper discussion, we briefly understand 2 things:

1. \((0, N)\) tensor (because we know vectors).
2. One-forms.

\((0, N)\) tensor:

A tensor of type \((0, N)\) is a function of \(N \) vectors into the real number, which is linear in each of its \(N \) arguments.

Example is metric tensor, curvature tensor, etc.

\[\langle \mathbf{A}, \mathbf{B} \rangle = G(\mathbf{A}, \mathbf{B}) \]

\[G(\alpha \mathbf{A} + \beta \mathbf{B}, \mathbf{C}) = \alpha G(\mathbf{A}, \mathbf{C}) + \beta G(\mathbf{B}, \mathbf{C}) \]

A tensor is a geometric object which gives the same real number independently of the reference frame. Hence frame invariant.

\[G(\mathbf{e}_\alpha, \mathbf{e}_\beta) = G_{\alpha \beta} \]

2. Index in subscript.
A tensor of form \otimes is called covector, a covariant vector or one-form.

They form part of dual vector space.

Hence one-form takes a vector as an argument and gives a real number.

\[
\tilde{s} = \tilde{r} = 0 \rightarrow \tilde{s}(\tilde{v}) = \tilde{r}(\tilde{v}).
\]

Linearity:

\[
\tilde{s} = \tilde{r} = 0 \rightarrow \tilde{s}(\tilde{v}) = \lambda \tilde{r}(\tilde{v}) = \lambda \tilde{r}(\lambda \tilde{v}) = \lambda \tilde{s}(\lambda \tilde{v})
\]

Hence set of all 1-forms satisfy the axioms for a vector space called "dual vector space".

Component of 1-form:

\[
P_\alpha = \tilde{\rho}(\tilde{e}_\alpha).
\]

Compare:

\[
\tilde{\rho}(\tilde{v}) = \tilde{A} = A^\alpha \tilde{e}_\alpha.
\]

α-Component of vector:

\[
\tilde{\rho}(\tilde{e}_\alpha).
\]

Hence P_α transforms like \tilde{e}_α. Hence called covector.

Action of 1-form on a vector and frame invariance:

\[
\tilde{\rho}(\tilde{A}) = \tilde{\rho}(A^\alpha \tilde{e}_\alpha) = A^\alpha \tilde{\rho}(\tilde{e}_\alpha) = A^\alpha P_\alpha
\]

Frame invariance (also product) not inner product and is scalar.

\[
P_{\tilde{\beta}} = \tilde{\rho}(\tilde{e}_\beta) = \tilde{\rho}(\Lambda_{\tilde{\beta}}^{\alpha} \tilde{e}_\alpha) = \Lambda_{\tilde{\beta}}^{\alpha} P_\alpha
\]

\[
\rightarrow \text{comp. transforms like } \tilde{e}_\beta.
\]
Now consider frame \tilde{x} and \tilde{y}

$$\tilde{P}(\tilde{\alpha}) = A^\alpha A^\beta \tilde{p}_\alpha = (\Lambda^\alpha_\beta A^\beta) \Lambda^\gamma_\delta \tilde{p}_\gamma \Lambda^\gamma_\alpha \Lambda^\delta_\beta \tilde{p}_\delta.$$

By frame invariance,

$$\tilde{P}(\tilde{\alpha}) = A^\alpha \tilde{p}_\alpha = \Lambda^\alpha_\beta A^\beta \tilde{p}_\beta.$$

Basis one-form = Called basis dual to $\{\tilde{e}^\alpha\}$.

$$\tilde{P} = \tilde{p}_\alpha \tilde{e}^\alpha \quad \tilde{P}(\tilde{\alpha}) = \tilde{p}_\alpha \tilde{e}^\alpha(\tilde{\alpha}) = \lambda^\alpha_\beta (A^\beta \tilde{e}_\beta) = \lambda^\alpha_\beta (\tilde{e}_\beta(\tilde{e}_{\beta})).$$

$$\Rightarrow \tilde{e}^\alpha(\tilde{e}_\beta) = \delta^\alpha_\beta.$$

Transformation

$$\tilde{e}^\alpha = \Lambda^\alpha_\beta \tilde{e}^\beta,$$

transforms like a component 1-vector.

Note: 1-form is tensor of form (\mathbb{Q}).

Hence it $\in \mathbb{Q}$.

There metric tensor is (\mathbb{Q}) tensor.

$$\tilde{g}(\tilde{e}^\alpha, \tilde{e}_\beta) = \tilde{g}_{\alpha\beta},$$

Takes 2 one form
GRADIENT OF A SCALAR ALONG A DIRECTION

\[\vec{u} = u^\alpha \vec{e}_\alpha \]

\(\tau \): Be the world line (inertial frame time)

It is the parametrization of the world line.

We want to find \(\vec{u} \), which is velocity. Any coordinate system given by metric:

\[\vec{u} = \frac{d}{d\tau} (t, x, y, z) = \left(\frac{dt}{d\tau}, \frac{dx}{d\tau}, \frac{dy}{d\tau}, \frac{dz}{d\tau} \right) \]

We wish to find change of the scalar \(\phi \) along the world line:

\[\frac{d\phi}{d\tau} = \frac{d\phi}{dt} \frac{dt}{d\tau} + \frac{d\phi}{dx} \frac{dx}{d\tau} + \frac{d\phi}{dy} \frac{dy}{d\tau} + \frac{d\phi}{dz} \frac{dz}{d\tau} \]

\[\nabla_{\vec{u}} \phi = \nabla \phi \left(\vec{u}, \phi \right) = \phi, \alpha \vec{u}^\alpha \]

Contravariant component of a vector \(\vec{u} \) with one form \(\nabla \phi \).

Hence \(\nabla \phi \) is a 1-form.

\(\nabla \phi (\vec{u}) \) is scalar representing directional derivative of \(\phi \) along \(\vec{u} \).
Hence we can represent
\[\nabla = \tilde{\omega}^\mu \frac{\partial}{\partial x^\mu} \]

Derivative along \(\bar{u} \)
\[\nabla_{\bar{u}} = \tilde{\omega}^\mu (u^a \bar{e}_a) \frac{\partial}{\partial x^\mu} = u^\mu \frac{\partial}{\partial x^\mu} = \frac{\partial x^\mu}{\partial \bar{u}} \frac{\partial}{\partial x^\mu} = \frac{\partial}{\partial \bar{u}} \]

Tangent vector.
\[\bar{e}_\mu = \frac{\partial}{\partial x^\mu} \]

COVARIANT DERIVATIVE
OF TENSOR.

Now we consider \((M \times N)\) tensor. Its multilinear in \(M\) one-forms and \(N\) vectors. On component in \(M\) one-forms and \(N\) vectors, say \((3 \times 3)\) tensor
\[T = T^\alpha_\beta \tilde{\omega}^\lambda \otimes \tilde{\omega}^\mu \otimes \tilde{\omega}^\nu \otimes \bar{e}_\alpha \otimes \bar{e}_\beta \otimes \bar{e}_\gamma \]
\[\text{takes } 3 \text{ one-forms} \]
\[\text{takes } 3 \text{ vector} \]
\[\text{Take } 3 \text{ 1-form} \]

Consider \((1 \times 1)\) tensor
\[T = T^\alpha_\beta \bar{e}_\alpha \otimes \bar{e}_\beta \]

We wish to find covariant derivative of \(T\).
If T is (M, N)-tensor then ∇T gives $(M + N + 1)$-tensor as there is an additional slot (particular direction) along which the derivative is needed.

If ϕ is scalar, $\nabla \phi$ is 1-form or (0) tensor to give $\nabla \phi$ which is again a real number.

Now consider (1) tensor

$$\nabla T = \nabla \left[T^\alpha_\beta \mathbf{e}^\alpha \otimes \mathbf{w}^\beta \right]$$

will be (2) tensor:

$$= (\nabla T^\alpha_\beta) (\mathbf{e}^\alpha \otimes \mathbf{w}^\beta) + T^\alpha_\beta (\nabla \mathbf{e}^\alpha) \otimes \mathbf{w}^\beta + T^\alpha_\beta \mathbf{e}^\alpha \otimes (\nabla \mathbf{w}^\beta)$$

is a scalar.

Hence ∇T^α_β is 1-form or (0) tensor.

Hence $\nabla T^\alpha_\beta = \left[\tilde{\nabla} \frac{\partial}{\partial \chi^\gamma} \right] T^\alpha_\beta = \frac{\partial T^\alpha_\beta}{\partial \chi^\gamma} \tilde{\nabla} \gamma \mathbf{w}$

we need a vector or a direction in manifold to get a real no.
Now consider \(\nabla e^a \) is vector or \((1,1)\) tensor as it takes a 1-form to get a number.

Hence \(\nabla e^a \) is a number \((1)\) tensor.

\[
\nabla e^a = \tilde{\omega}^a \frac{\partial e^a}{\partial x^r} = \Gamma^s_{\alpha \beta} e^s \otimes \tilde{\omega}^\alpha .
\]

Similarly

\[
\nabla \tilde{\omega}^\beta = \tilde{\omega}^a \frac{\partial \tilde{\omega}^\beta}{\partial x^r} = -\Gamma^a_{\alpha \nu} (\tilde{\omega}^\alpha \otimes \tilde{\omega}^\nu) .
\]

Can be proven.

Now

\[
\nabla T = T^\alpha_{\beta \gamma} \left(\tilde{\omega}^\gamma \otimes e^\alpha \otimes \tilde{\omega}^\beta \right) + T^\alpha_{\beta \gamma} \left(\Gamma^a_{\alpha \beta} \tilde{\omega}^\alpha \otimes \tilde{\omega}^\gamma \right) e^a \otimes \tilde{\omega}^\beta \otimes \tilde{\omega}^\gamma
\]

\[
+ T^\alpha_{\beta \gamma} \tilde{e}^\beta \otimes (-\Gamma^a_{\alpha \nu} \tilde{\omega}^\nu \otimes \tilde{\omega}^\alpha)
\]

\[
= (T^\alpha_{\beta \gamma} + T^\alpha_{\beta \gamma} \Gamma^\alpha_{\beta \gamma} - T^\alpha_{\alpha \beta} \Gamma^\alpha_{\beta \gamma}) e^\alpha \otimes \tilde{\omega}^\beta \otimes \tilde{\omega}^\gamma
\]

\(\nabla T \) is \((1,1)\) tensor with \((\nabla T)^\alpha_{\beta \gamma} \) being

\[
(\nabla T)^\alpha_{\beta \gamma} = \Gamma^\alpha_{\beta \gamma} + T^\alpha_{\beta \gamma} \Gamma^\beta_{\alpha \gamma} - T^\alpha_{\alpha \beta} \Gamma^\beta_{\gamma} = T^\alpha_{\beta \gamma}
\]

Called "Covariant Derivative"
Summary

\[\nabla^ \alpha \nabla_ \beta \Gamma^ \gamma_ {\nu \rho} = \Gamma^ \gamma_ {\nu \rho \beta} - \Gamma^ \gamma_ {\nu \alpha} \Gamma^ \alpha_ {\rho \beta} - \Gamma^ \gamma_ {\nu \lambda} \Gamma^ \lambda_ {\rho \beta} . \]

\[\Rightarrow \nabla^ \gamma \Gamma^ \gamma_ {\nu \rho} = (\nabla^ \gamma \Gamma)_{\nu \rho} \quad \tilde{\omega}^ \rho_ {\rightarrow} (\tilde{e}^ \rho) \quad \tilde{\omega}^ \nu_ {\rightarrow} (\tilde{e}^ \nu) \quad \tilde{\omega}^ \gamma_ {\rightarrow} (\tilde{e}^ \gamma) . \]

\[\exists \text{connection}. \]

\[\nabla^ \gamma A = A^ \gamma_ {\nu \rho} + A^ \gamma_ {\nu} \Gamma^ \rho_ {\rightarrow} + A^ \gamma_ {\lambda} \Gamma^ \rho_ {\rightarrow} . \]

\[\text{let } \nabla^ \gamma A \text{ be component } \gamma \text{ tensor } A \text{ which } \gamma^{(2)} \text{ tensor} \]

\[\text{Hence } \quad A^ \gamma_ {\nu \rho} \quad \tilde{\omega}^ \rho_ {\rightarrow} \tilde{e}^ \gamma \quad \tilde{\omega}^ \nu_ {\rightarrow} \tilde{e}^ \gamma . \]

\[\Rightarrow \nabla^ \gamma A^ \gamma_ {\nu \rho} = A(\tilde{\omega}^ \rho_ {\rightarrow} \tilde{e}^ \gamma , \tilde{\omega}^ \nu_ {\rightarrow} \tilde{e}^ \gamma) . \]

\[\nabla^ \gamma B^ \gamma_ {\nu \rho} = B^ \gamma_ {\nu \rho} + B^ \lambda_ {\nu} \Gamma^ \gamma_ {\rho \lambda} - B^ \gamma_ {\lambda} \Gamma^ \lambda_ {\nu \rho} . \]
"Spacetime tells matter how to move; matter tells spacetime how to curve." - John Wheeler.

Intrinsic curvature is defined as the difference between an initial vector and the same vector parallel-transported around an infinitesimal loop.

Can be found in chapter 6 "Curved Manifold" in "A First Course in GR".

\[
\frac{\partial}{\partial \lambda} \left[\frac{\partial}{\partial \lambda} \right] V^\alpha = 0 \quad \text{a} \, \text{d} b \left[\Gamma^\lambda_{\mu\nu} + \Gamma^\lambda_{\nu\mu} - \Gamma^\mu_{\lambda\nu} \right] V^\mu.
\]

\[
= \left(\delta^\alpha_{\mu} d \delta b \right) R^\lambda_{\mu \lambda}.
\]

\[
R = R^\alpha_{\mu \lambda} \quad e^\lambda \otimes \tilde{\omega} \otimes \tilde{\omega} \otimes \tilde{\omega}.
\]
\[R \left(\tilde{w}^s, \tilde{v}, d\alpha e^a, d\beta \tilde{v} \right) \]

A vector \(\tilde{v} \) is moved in an infinite loop.

To get a component of \(\tilde{v} \).

The vector that is parallelly transported.

\[= R^{\alpha}_{\beta\gamma\delta} \ v^\alpha \tilde{w}^\beta (\tilde{v}) \otimes \tilde{w}^\gamma (d\alpha e^a) \otimes \tilde{w}^\delta (d\beta \tilde{v}) \]

\[= R^{\alpha}_{\beta\gamma\delta} \ \delta^\alpha_{\delta} d\alpha d\beta \tilde{v}^\gamma = d\tilde{v}^\gamma. \]

Curvature Tensor as manifestation of **Gravity**

Consider two nearby geodesics \(V(\lambda) \) and \(V'(\lambda) \) parametrized...
It can be proven:

\[\nabla \nabla \xi = R(\tilde{\omega}^a, \tilde{\nabla}, \tilde{\nabla}, \xi) \]

or

\[\nabla \nabla \xi = R(\tilde{\omega}^a, \tilde{\nabla}, \tilde{\nabla}, \xi) = R_{\alpha \beta \gamma} \tilde{\omega}^\alpha \tilde{\omega}^\beta \xi^\gamma \]

Hence the Riemann tensor is the generator of the relative acceleration of nearby geodesics.

Do gravitation is manifest, the relative acceleration of closely spaced freely falling test particles,

Lowering and Raising the Index

Consider a vector \(\vec{A} = A^\alpha \vec{e}_\alpha \). We can convert it to a 1-form as

\[\tilde{A} = g(\nabla, \vec{A}) = A^\alpha g(\nabla, \vec{e}_\alpha) = g_{\alpha \beta} \tilde{\omega}^\alpha \otimes \tilde{\omega}^\beta(\vec{A}). \]

This operation involves converting a vector to a 1-form, which requires one additional vector.

\[\tilde{A} = A^\alpha \tilde{\omega}^\alpha \]

\[A_\alpha = g_{\alpha \beta} A^\beta \]

\[\text{Component of } \tilde{A} \text{ 1-form} \]
Similarly

\[R'_{j'k'\ell} = \Gamma^\alpha_{i'\alpha} R'_{j'k'\ell}. \]

Similarly, \(T^\alpha_{\beta} = g^{i'\alpha} T^\alpha_{\beta} \)

(0) tensor \(\rightarrow \) (1) tensor

From: Do-Carmo

Definition: A tensor \(T \) of order \(r \) (or basically \((r) \)-tensor)
on a smooth manifold \(\mathbb{M} \)
a multilinear mapping

\[T: \mathbb{X}(\mathbb{M}) \times \ldots \times \mathbb{X}(\mathbb{M}) \rightarrow \mathbb{D}(\mathbb{M}) \]

Takes \(r \) vector \quad Gives a scalar

Multilinear implies, if \(X, \ldots, Y_r \in \mathbb{X}(\mathbb{M}), \, X, Y \in \mathbb{X}(\mathbb{M}), \) \(f, g \in \mathbb{D}(\mathbb{M}), \)

\[T(X, \ldots, fX + gY, \ldots, Y_r) = f \cdot T(X, \ldots, X, \ldots, X) + g \cdot T(X, \ldots, Y, \ldots, Y). \]
Component of tensor.

Tensor T is pointwise object.

Define $\bar{E}_1, \ldots, \bar{E}_n \in \mathfrak{X}(M)$ such that if $q \in U$,

\[
\{ \bar{E}_i(q) \} \text{ form basis of } T_qM.
\]

Hence \bar{E}_i is like a monop frame on U.

\[
\Rightarrow \quad Y_r = \bar{Y}_r^i \bar{E}_i \quad \text{Sum unflled over } i
\]

Then $T(Y_1, \ldots, Y_n) = \bar{Y}_r^i \bar{Y}_r^j T(\bar{E}_i, \ldots, \bar{E}_i)$.

\[
\text{Sum on } i
\]

\[
T(\bar{E}_i, \ldots, \bar{E}_i) = \bar{T}_{ij} \ldots \bar{T}_{ij} \quad \text{is component of tensor } T \text{ in } \{ \bar{E}_i \}.
\]

Eg: Curvature tensor.

\[
\bar{R} : \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M) \quad \to \mathcal{O}(M)
\]

Defined by

\[
\bar{R}(\bar{X}, \bar{Y}, \bar{Z}, \bar{W}) = \langle \bar{R}(\bar{X}, \bar{Y}) \bar{Z}, \bar{W} \rangle.
\]

\[
\text{In fact (0)}
\]

\[
\text{Egvector.}
\]

\[
\bar{R}(\bar{X}_i, \bar{X}_j \bar{X}_k, \bar{X}_l) = \bar{R}_{ij}^k \bar{R}_{kl}^i \quad \text{Component of } \bar{R} \text{ in } \{ \frac{\partial}{\partial \bar{E}_i} \} \text{ frame}.
\]
Eg: Riemannian connection ∇ defined as
\[\nabla(x, y, z) = \langle \nabla_x y, z \rangle \] is not tensor as $\nabla_x (f y) \neq f \nabla_x y$, so not linear in y.

Remark 5.5 hints I-forms and why they are not necessary in Riemannian manifold.

Covariant derivative of tensor

Let T be tensor of order r. The covariant differential ∇T of T is a tensor of order $(r+1)$ given by
\[\nabla T(x_1, \ldots, x_r, z) = z \left(T(\nabla_z x_1, \ldots, x_r) - T(x_1, \ldots, x_r) \right) - \cdots - T(x_1, \ldots, x_{r-1}, \nabla_z x_r). \]

We need to give the direction along which the variation of tensor is to be observed.

For each $z \in \mathcal{X}(M)$, the covariant derivative $\nabla_z T$ of T relative to z is a tensor of order r given by
\[\nabla_z T(x_1, \ldots, x_r) = \nabla T(x_1, \ldots, x_r, z). \]
Hence we aim to find change of tangent field along a curve.

\[\mathbf{\gamma}'(t) = T(t) \mathbf{e}_s(t) \]

\[T_{PM} = \mathbf{e}^i \text{ basis } T_PM = \mathbf{e}^i(\omega(t)) \]

\[\{ \mathbf{e}_i(t) \} \text{ basis } \mathcal{T}_x(M) \text{ but is parallelly transported along curve.} \]

Hence \(\nabla_{\mathbf{\gamma}'(t)} \mathbf{e}_i(t) = 0 \).

Proof

If tangent field along curve. Hence \(T'(t) \) is function of \(t \):

\[T(e_1(t), e_2(t), \ldots, e_i(t)) = T_{ij2 \ldots ir} \]

\[\nabla \mathbf{T} (e_1(t), e_2(t), \ldots, e_i(t)) = \nabla e_i(t) = -T(g_1(t), \ldots, \nabla e_i(t)) \]

\[= \frac{d}{dt} T_{ij2 \ldots ir} \] change of magnitude.

\[-T (\nabla e_i(t), \ldots) \]

\[= \frac{d}{dt} T_{ij2 \ldots ir} \]

In this frame, the component of covariant derivative of \(T \) are usual derivatives of component of \(T \).

Can we say that Christoffel symbol is specifically zero in this frame?
Covariant derivative of metric \(g(x, y) \)

\[
\nabla_x g(x, y) = \mathcal{L}_x \langle x, y \rangle - \langle \nabla_x x, y \rangle - \langle x, \nabla_x y \rangle.
\]

along some curve \(\alpha(t) \)

But for Riemannian metric:

\[
\frac{d}{dt} \langle v, w \rangle = \langle \frac{d}{dt} v, w \rangle + \langle v, \frac{d}{dt} w \rangle.
\]

\[
\Rightarrow \mathcal{L}_x \langle x, y \rangle = \langle \nabla_x x, y \rangle + \langle x, \nabla_x y \rangle.
\]

from (1) and (3)

\[
\nabla_x g(x, y) = 0.
\]