More interesting properties of Jacobi fields:

Proposition: \(\gamma : [0, a] \rightarrow M \) geodesic.

If \(J \) Jacobi field along \(\gamma \), then

\[
\left< J(t), \gamma'(t) \right> \text{ is affine linear, i.e.,}
\]

\[
= \left< J(0), \gamma'(0) \right> + \left< \frac{DJ}{dt}(0), \gamma'(0) \right> t
\]

Proof: we need to prove:

\[
\frac{d}{dt} \left< J(t), \gamma'(t) \right> \text{ is constant.}
\]

\[
= \frac{d^2}{dt^2} \left< J(t), \gamma'(t) \right> = \left< \frac{D^2 J}{dt^2}(t), \gamma'(t) \right>
\]

\[= \left< -R(\gamma', J) \gamma', \gamma' \right>(t) = 0 \quad \text{by skew-symmetry of curvature.}
\]

\(\square \).
Corollary 1: \(\langle J(t), \gamma'(t) \rangle \) is either injective or constant. It is constant if \(\langle \frac{DJ}{dt}(0), \gamma'(0) \rangle = 0 \).

Corollary 2: \(\forall t J(t) = 0 \), then \(\langle J(t), \gamma'(t) \rangle = \langle \frac{DJ}{dt}(0), \gamma'(0) \rangle t \)
\[= \langle w, v \rangle t \]
so \(J(t) \perp \gamma'(t) \ \forall t \Leftrightarrow \langle w, v \rangle = 0 \)

Proposition: \(\gamma: [0, a] \rightarrow M \).
\(\gamma(0) = p \quad \gamma(a) = q \)
Suppose \(q \) is not conjugate to \(p \).

Given \(v_1 \in T_p M \), \(v_2 \in T_q M \)
\(\exists \) Jacobi field \(J \) along \(\gamma \) s.t.
\(J(0) = v_1 \), \(J(a) = v_2 \).

Proof: Given a Jacobi field \(J \) s.t.
\(J(0) = 0 \), define \(ev_{q}(J) := J(a) \).

So we have a map from the space of Jacobi fields, \(J_{op} \), to \(T_q M \).
evq: $T_{q\theta} \rightarrow T_q M$

this is linear between vector spaces of dim. n.

Claim: evq is an isom.
so it is injective.

$evq(J) = 0$, means $T(a) = 0$
but q is not conjugate to p, so $J \equiv 0$.

So evq is injective, hence also surjective, hence $\exists J_2$

s.t. $J_2(0) = 0$, $J_2(a) = V_2$.

Now reverse θ to obtain J_1, s.t.

$J_1(0) = V_1$, $J_1(a) = 0$.

Then define $J = J_1 + J_2$

Remark: J is unique because if

we had J, J', s.t. then $(J - J')(0) = (E - J')(a)$

but q is NOT conjugate to p. $= 0$
Corollary: \(\gamma : [0, a) \rightarrow M.\)
\(J^+ := \) space of Jacobi fields, \(J \)
\(n.t. \ J(0) = 0 \) \& \(\frac{dJ}{dt}(0) \perp \gamma'(0). \)

Let \(\{J_1, \ldots, J_{n-1}\} \) be a basis of \(J^+ \), then if \(\gamma(t) \) is not conjugate to \(\gamma(0) \), then for \(\forall t \):
\(\{J_1(t), \ldots, J_{n-1}(t)\} \) is a basis of \(\gamma'(t)^\perp \)

Proof: From the first prop.:
\[\langle J(t), \gamma'(t) \rangle = \langle \frac{dJ}{dt}(0), \gamma'(0) \rangle t \]
So \(J(t) \perp \gamma'(t) \iff \frac{dJ}{dt}(0) \perp \gamma'(0) \) if \(t \neq 0. \)

Also, by the proof of the second prop.:
\(e_{N_t} : J_{0,p} \rightarrow T_{\gamma(t)}M \)
is an isom. if \(\gamma(t) \) is not conjugate to \(\gamma(0) = p \)
So $J_1(t), \ldots, J_{n-1}(t) \in \mathcal{X}(t)^1$ and they are linearly indep. if $r(t)$ is not conjugate to $\mathcal{X}(o) = \mathfrak{p}$. □