Recap

A *vertex* is a *feasible* point at which at least n linearly independent constraints are active.

The active constraint matrix A_a has rank n at a vertex.
Example:

\[\begin{align*}
 x_1 + x_2 & \geq 1 \\
 x_1 & \geq 0 \\
 -x_1 & \geq -2 \\
 x_2 & \geq 0 \\
 x_1 + 2x_2 & \geq 1
\end{align*} \]

In matrix-vector form \(Ax \geq b \), with

\[
A = \begin{pmatrix}
 1 & 1 \\
 1 & 0 \\
 -1 & 0 \\
 0 & 1 \\
 1 & 2
\end{pmatrix}
\]

and

\[
b = \begin{pmatrix}
 1 \\
 0 \\
 -2 \\
 0 \\
 1
\end{pmatrix}
\]
\[
A = \begin{pmatrix}
1 & 1 \\
1 & 0 \\
-1 & 0 \\
0 & 1 \\
1 & 2
\end{pmatrix}
\]

\[
A_a = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix} \text{(vertex)}
\]

\[
A_a = \begin{pmatrix}
1 & 1 \\
1 & 2
\end{pmatrix} \text{(vertex)}
\]

\[
A_a = \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix} \text{(non-vertex)}
\]
Definition (Nondegenerate vertex)

A vertex at which exactly n constraints are active is called a **nondegenerate vertex**.

Result

If \bar{x} is a nondegenerate vertex, then A_a is nonsingular.

Definition (Degenerate vertex)

A vertex at which more that n constraints are active is called a **degenerate vertex**.
\(A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \)

\(A_a = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \) (nondegenerate vertex)

\(A_a = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \) (degenerate vertex)
Result

At a degenerate vertex \(\bar{x} \), every subset of \(n \) linearly independent constraints \textit{uniquely} defines \(\bar{x} \).

Recall, tall thin systems of equations (with full-rank) have \textit{unique} solutions.
When can we *guarantee* that $Ax \geq b$ has a vertex?

How do we *find* a vertex?

Result (Existence of a vertex)

If the following conditions hold:

1. $F = \{x : Ax \geq b\}$ has at least one point.

2. $\text{rank}(A) = n$

then F has at least one vertex.
Result (Existence of a vertex)

If the following conditions hold:

1. $F = \{x : Ax \geq b\}$ has at least one point.

2. $\text{rank}(A) = n$

then F has at least one vertex.
(Constructive) Proof:

The assumptions are:

- There is at least one feasible point, say x_0 such that $Ax_0 \geq b$.
- There is at least one subset of n independent rows of A.
(Constructive) Proof:

The assumptions are:

- There is at least one feasible point, say x_0 such that $Ax_0 \geq b$.

- There is at least one subset of n independent rows of A.

Consider any feasible point x_0. Define the active set at x_0, i.e.,

$$A_0x_0 = b_0$$

Assume that $\text{rank}(A_0) < n$ (otherwise there is nothing to prove!)

A_0 may be any shape (because it may have dependent rows).
We construct a *sequence of feasible points*, labeled as

\[x_0, \ x_1, \ \ldots, \ x_k, \ x_{k+1}, \ \ldots \]

with active-set matrices

\[A_0, \ A_1, \ \ldots, \ A_k, \ A_{k+1}, \ \ldots \]

such that

\[\text{rank}(A_{k+1}) > \text{rank}(A_k) \]

...we stop when we get to a point with an active-constraint matrix that has rank \(n \) (i.e., when we get to a vertex).

Now, we show how to get \(x_{k+1} \) from \(x_k \) (i.e., the \(k \)th iteration)
kth iteration: Step 1:

The previous steps give x_k, A_k and b_k such that

$$A_k x_k = b_k \quad \text{and} \quad \text{rank}(A_k) < n$$

First, we identify an inactive constraint $a_j^T x \geq b_j$ that is independent of the active constraints, i.e.,

$$\text{rank} \left(\begin{pmatrix} A_k \\ a_j^T \end{pmatrix} \right) = \text{rank}(A_k) + 1$$

It is always possible to find $a_j^T x \geq b_j$ because A has at least one subset of n linearly independent constraints.

Note that $r_j(x_k) > 0$ because $a_j^T x \geq b_j$ is inactive.
kth iteration: Step 2:

Compute a feasible direction p_k such that:

(A) any positive step along p_k reduces the residual $r_j(x)$

i.e., “p_k points towards the infeasible side of $a_j^T x \geq b_j$”

(B) the active-constraints stay active for any step along p_k

i.e., the active-constraint residuals stay fixed at zero.

Conditions (A) and (B) \Rightarrow p_k satisfies

(A) $a_j^T p_k < 0$

(B) $a_i^T p_k = 0$ for all $i \in A(x_k)$
Conditions (A) and (B) $\Rightarrow p_k$ satisfies:

(A) $a_j^T p_k < 0$

(B) $a_i^T p_k = 0$ for all $i \in \mathcal{A}(x_k)$

Conditions (A) and (B) $\Rightarrow p_k$ satisfies:

(A) $a_j^T p_k = -1$

(B) $A_k p_k = 0$
This is just a set of *linear equations* for the direction p_k.

Are these equations compatible?
\[
\begin{pmatrix}
A_k \\
a_j^T
\end{pmatrix}
\begin{pmatrix}
p_k \\
-1
\end{pmatrix} \leftarrow \text{vector of zeros}
\]

This is just a set of *linear equations* for the direction \(p_k \).

Are these equations compatible?

Yes! We will construct one solution (there may be others).
Write

\[a_j = a_R + a_N \quad \text{with} \quad a_R \in \text{range}(A_k^T) \quad \text{and} \quad a_N \in \text{null}(A_k) \]

We know that
- \(a_R^T a_N = 0 \)
- \(a_N \neq 0 \)

(If \(a_N = 0 \), then

\[a_j = a_R + a_N = a_R \in \text{range}(A_k^T) \]

which contradicts the assumption that \(a_j \) is independent of the rows of \(A_k \))
Define
\[p_k = -\frac{1}{a_N^T a_N} a_N \neq 0 \]

Then \(p_k \in \text{null}(A_k) \), with
\[
a_j^T p_k = -\frac{1}{a_N^T a_N} a_j^T a_N = -\frac{1}{a_N^T a_N} (a_R + a_N)^T a_N
\]
\[
= -\frac{1}{a_N^T a_N} (a_R^T a_N + a_N^T a_N)
\]
\[
= -\frac{1}{a_N^T a_N} a_N^T a_N = -1
\]

All this implies that
\[
\begin{pmatrix} A_k \\ a_j^T \end{pmatrix} p_k = \begin{pmatrix} A_k p_k \\ a_j^T p_k \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}
\]
kth iteration: Step 3:

Now we try to step along p_k to the boundary of $a_j^T x \geq b_j$

We step to the hyperplane $a_j^T x = b_j$ as long we can stay feasible.
kth iteration: Step 3:

Find the step σ_t to a constraint $a_t^T x \geq b_t$ that is blocking along p_k.

Since $a_t^T x \geq b_t$ is blocking, it must hold that

$$a_t^T (x_k + \sigma_t p_k) - b_t = 0 \implies a_t^T x \geq b_t \text{ is active at } x_k + \sigma_t p_k$$

Define $\alpha_k = \sigma_t$ and update the iterate and active set as

$$x_{k+1} = x_k + \alpha_k p_k$$

$$A_{k+1} = \begin{pmatrix} A_k \\ a_t \end{pmatrix} \text{ plus any other blocking constraints}$$

Finally, increment k and continue at Step 1.
One loose end . . .

We have to show that

\[\text{rank}(A_{k+1}) > \text{rank}(A_k) \]

Result

A blocking constraint \(a_t^T x \geq b_t \) is independent of the constraints in the active set \(A_k \).

Proof: Suppose that

\[a_t = A_k^T w \quad \text{for some nonzero } w \]

Then

\[p_k^T a_t = p_k^T A_k^T w = (A_k p_k)^T w \]
Repeating the last equation:

$$a_t^T p_k = p_k^T a_t = (A_k p_k)^T w$$

The vector p_k was chosen so that $A_k p_k = 0$, giving

$$a_t^T p_k = (A_k p_k)^T w = 0$$

But a blocking constraint must satisfy $a_t^T p_k < 0$ because

$$\sigma_t = \sigma = \begin{cases} +\infty & \text{if } a_t^T p_k \geq 0 \\ \min_{i : a_i^T p_k < 0} \frac{r_i(\bar{x})}{(-a_i^T p_k)} & \text{otherwise} \end{cases}$$

\Rightarrow a contradiction, and $a_t^T x \geq b_t$ must be independent of the active constraints.
It follows that

$$\text{rank}(A_{k+1}) > \text{rank}(A_k)$$

⇒ the algorithm above must terminate at a vertex in a finite number of steps.
Summary

We have proved that:

Result (Existence of a vertex)

If $F = \{ x : Ax \geq b \}$ has at least one point and $\text{rank}(A) = n$, then F has at least one vertex.
\[a_j^T x = b_j \]

\[A_k x_k = b_k \]
\[a_T^j x = b_j \]

\[A_k x_k = b_k \]
\[A_k x_k = b_k \]
\[x_k + \sigma_j p_k \]
\[a_j^T x = b_j \]
\[a_j^T x = b_j \]

\[a_t^T x = b_t \]

\[A_k x_k = b_k \]
\[a^T_T x = b_t \]

\[a^T_j x = b_j \]

\[x_{k+1} = x_k + \alpha_k p_k \]

\[A_k x_k = b_k \]