Recap: LP formulations

Problems considered so far:

ELP
\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad x \in \mathbb{R}^n \quad Ax = b
\end{align*}
\]

LP
\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \geq b
\end{align*}
\]

Now we consider a *mixture of constraint types*.
Linear programs with mixed constraints

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b, \quad \text{equality constraints} \\
& \quad Dx \geq f, \quad \text{inequality constraints}
\end{align*}
\]

The dimensions are:

- \(A\) \(m \times n\) matrix
- \(b\) \(m\)-vector
- \(D\) \(m_D \times n\) matrix
- \(f\) \(m_D\)-vector
Optimality Conditions
Example: Consider inequalities and just one equality constraint:

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a^T x = b, \quad D x \geq f
\end{align*}
\]

Write the equality constraint as two inequalities:

\[
a^T x \geq b \\
\text{and } a^T x \leq b, \quad \text{i.e., } (−a)^T x \geq −b
\]

If \(x^*\) is an optimal solution, then both

\[
a^T x \geq b \quad \text{and} \quad (−a)^T x \geq −b
\]

must be active at \(x^*\).
Suppose that \(x^* \) is a solution of the mixed-constraint problem:

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a^T x \geq b, \quad (-a)^T x \geq -b, \quad Dx \geq f
\end{align*}
\]

This problem has all inequalities, so we can use existing theory.

Let \(D_a \) denote the matrix of active inequalities at \(x^* \).

The full active set for the mixed-constraint problem is

\[
\begin{pmatrix}
 a^T \\
 -(a^T) \\
 D_a
\end{pmatrix}
\begin{pmatrix}
 x^* \\
 b
\end{pmatrix}
=
\begin{pmatrix}
 b \\
 -b \\
 f_a
\end{pmatrix}
\]
From the preceding slide:

\[A_a'' = \begin{pmatrix} a^T \\ -a^T \\ D_a \end{pmatrix} \]

The optimality conditions \(A_a^T \lambda_a = c \), with \(\lambda_a \geq 0 \) are:

\[c = (a \quad -a \quad D_a^T) \begin{pmatrix} \lambda_1^* \\ \lambda_2^* \\ z_a^* \end{pmatrix}, \text{ with } \lambda_1^* \geq 0, \lambda_2^* \geq 0 \text{ and } z_a^* \geq 0 \]
From the preceding slide:

\[
c = \begin{pmatrix} a & -a & D_a^T \end{pmatrix} \begin{pmatrix} \lambda_1^* \\ \lambda_2^* \\ z_a^* \end{pmatrix}, \text{ with } \lambda_1^* \geq 0, \lambda_2^* \geq 0 \text{ and } z_a^* \geq 0
\]

\[
c = a\lambda_1^* - a\lambda_2^* + D_a^T z_a^*
\]

\[
= a(\lambda_1^* - \lambda_2^*) + D_a^T z_a^*
\]

positive or negative

\[
= a\pi^* + D_a^T z_a^*, \text{ with } \pi^* = \lambda_1^* - \lambda_2^*
\]
From the preceding slide:

\[c = a\pi^* + D_a^T z_a^*, \text{ with } z_a^* \geq 0 \]

\(\pi^* \) is the Lagrange multiplier for the constraint \(a^T x = b \).

\(\pi^* \) can be any sign.
Optimality conditions: active-set form

Result

Consider the linear program

\[
\text{minimize } \quad c^T x \\
\text{subject to } \quad Ax = b, \quad Dx \geq f
\]

Then \(x^* \) is a minimizer \textit{if and only if} \(Ax^* = b, \, Dx^* \geq f \), and there exist \(\pi^* \) and \(z_a^* \) such that

\[
c = A^T \pi^* + D_a^T z_a^*, \quad z_a^* \geq 0
\]

where \(D_a \) is the matrix of rows of \(D \) corresponding to inequality constraints active at \(x^* \).
Optimality conditions: complementary slackness form

Result

Consider the linear program

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b, \quad Dx \geq f
\end{align*}
\]

Then \(x^*\) is a minimizer if and only if \(Ax^* = b, \; Dx^* \geq f\), and there exist \(\pi^*\) and \(z^*\) such that

\[
\begin{align*}
c &= A^T \pi^* + D^T z^*, \quad z^* \geq 0 \\
z_i^*(d_i^T x^* - f_i) &= 0, \quad i = 1, \ldots, m_D
\end{align*}
\]
The Simplex Method
for Mixed Constraints
\[
\minimize_{x \in \mathbb{R}^n} \quad c^T x \\
\text{subject to } \quad Ax = b, \quad Dx \geq f
\]

Assume that \(A \) as full row rank.

The full constraint matrix is:

\[
\begin{pmatrix}
A \\
D
\end{pmatrix} \quad \text{← these rows are } \textit{always} \text{ active}
\]

\[
\begin{pmatrix}
A \\
D
\end{pmatrix} \quad \text{← a } \textit{subset} \text{ of these rows will be active}
\]
Definition of the working set:

\[\mathcal{W}_k = \{ w_1, w_2, \ldots, w_{n-m} \} \]

\[\text{rows of } D \]

\[= \{ w_1, w_2, \ldots, w_{n-m} \} \]

The working-set defines a nonsingular matrix of the form

\[A_k = \begin{pmatrix} A \\ D_k \end{pmatrix} \]
(Step 1) Computation of the multipliers:

\[A_k^T \lambda_k = c \quad \text{with} \quad A_k = \begin{pmatrix} A \\ D_k \end{pmatrix} \]

Partition \(\lambda_k \) as

\[\lambda_k = \begin{pmatrix} \pi_k \\ Z_k \end{pmatrix} \quad \leftarrow \text{multipliers for } A\mathbf{x} = b \]
\[\leftarrow \text{multipliers for } D_k \mathbf{x}_k = f_k \]

This gives

\[\left(A^T \quad D_k^T \right) \begin{pmatrix} \pi_k \\ Z_k \end{pmatrix} = c \]

\(\Rightarrow \) we need only check the signs of the multipliers for \(D_k \)

\(\Rightarrow \) choose \(s \) such that \([Z_k]_s < 0\)
(Step 2) Computation of the search direction:

\[
A_k p_k = \begin{pmatrix} 0 \\ e_s \end{pmatrix} = e_{m+s}
\]

Note that

\[
\begin{pmatrix} A \\ D_k \end{pmatrix} p_k = \begin{pmatrix} A p_k \\ D_k p_k \end{pmatrix} = \begin{pmatrix} 0 \\ e_s \end{pmatrix}
\]

\[\implies A p_k = 0 \quad \text{and} \quad D_k p_k = e_s\]
(Step 3) Computation of the maximum feasible step:

We need only check $Dx \geq f$ for the blocking constraint, i.e.,

$$\alpha_k = \min\{\sigma_i\}, \quad \text{with} \quad \sigma_i = \begin{cases} \frac{d_i^T x_k - f_i}{(-d_i^T p_k)} & \text{if } d_i^T p_k < 0 \\ +\infty & \text{otherwise} \end{cases}$$
(Step 4) Updates:

In Step 3, we will identify a blocking constraint $d_t^T x \geq f_t$.

\[\mathcal{W}_k = \{w_1, w_2, \ldots, w_s, \ldots, w_{n-m}\} \]

\[\uparrow \quad \text{moved off this constraint} \]

\[\mathcal{W}_{k+1} = \{w_1, w_2, \ldots, t, \ldots, w_{n-m}\} \]

\[\uparrow \quad \text{moved onto this constraint} \]

\[A_{k+1} = \begin{pmatrix}
A \\
d_{w_1}^T \\
d_{w_2}^T \\
\vdots \\
d_t^T \\
\vdots \\
d_{w_{n-m}}^T
\end{pmatrix} \quad \leftarrow \text{row } m + s \]
Linear Programs in Standard Form
minimize \(c^T x \)

subject to \(Ax = b, \quad x \geq 0 \)

equality constraints \quad simple bounds

where \(A \) is \(m \times n \) with shape \(A = \) often, \(n \gg m \).

For standard form, we show that the two systems of order \(n \):

\[
A_T^k \lambda_k = c \quad \text{and} \quad A_k p_k = e_s
\]

are equivalent to two systems of order \(m \).
Every linear program can be written in standard form.

Example: Suppose the constraints are $Ax \geq b$.

\Rightarrow there are no simple bounds (i.e., the x_j are “free variables”.)
There are two steps involved in reformulating constraints in standard form:

- First, convert all the free variables into bounded variables
- Then convert the general inequalities into equalities
Suppose that we have $Ax \geq b$, with no bounds on x.

Define new nonnegative variables u_i and v_i such that

$$x_i = u_i - v_i, \quad u_i \geq 0, \quad v_i \geq 0$$

Then

$$Ax = A(u - v) = Au - Av = (A - A) \begin{pmatrix} u \\ v \end{pmatrix} \geq b$$

The objective becomes

$$c^T x = c^T (u - v) = c^T u - c^T v = (c^T - c^T) \begin{pmatrix} u \\ v \end{pmatrix}$$
This gives the linear program with $n' = 2n$ variables:

$$\begin{align*}
\text{minimize} & \quad c' Tx' \\
\text{subject to} & \quad A'x' \geq b', \quad x' \geq 0
\end{align*}$$

with

$$A' = (A - A), \quad x' = \begin{pmatrix} u \\ v \end{pmatrix}, \quad c' = \begin{pmatrix} c \\ -c \end{pmatrix} \quad \text{and} \quad b' = b$$

Now we assume that every variable is simply bounded, i.e., $x_i \geq 0$.
Next we show how to convert inequalities to equalities.

Example:

\[
\begin{align*}
\text{minimize} & \quad -6x_1 - 9x_2 - 5x_3 \\
\text{subject to} & \quad 2x_1 + 3x_2 + x_3 \leq 5 \\
& \quad x_1 + 2x_2 + x_3 \geq 3 \\
& \quad x_1, \quad x_2, \quad x_3 \geq 0
\end{align*}
\]
Consider the constraint $2x_1 + 3x_2 + x_3 \leq 5$.

Consider a new variable x_4 and the equality constraint

$$2x_1 + 3x_2 + x_3 + x_4 = 5$$

For feasible x_1, x_2, x_3 and for $x_4 \geq 0$, it holds that

$$2x_1 + 3x_2 + x_3 \leq 5$$

The variable x_4 is called a *slack* variable.
Now consider the constraint $x_1 + 2x_2 + x_3 \geq 3$.

Consider a new variable x_5 and the equality constraint

$$x_1 + 2x_2 + x_3 - x_5 = 3$$

For feasible x_1, x_2, x_3 and $x_5 \geq 0$, then

$$x_1 + 2x_2 + x_3 \geq 3$$

x_5 is called a *surplus variable*.
The final problem in standard form is:

\[
\begin{align*}
\text{minimize} & \quad -6x_1 - 9x_2 - 5x_3 \\
\text{subject to} & \quad 2x_1 + 3x_2 + x_3 + x_4 = 5 \\
& \quad x_1 + 2x_2 + x_3 - x_5 = 3 \\
& \quad x_1, \quad x_2, \quad x_3, \quad x_4, \quad x_5 \geq 0
\end{align*}
\]

- “Slack variable” is a generic name for both slack and surplus variables.
- An equality constraint \(a^T x = b \) needs neither a slack nor a surplus variable.
Optimality Conditions
for Standard Form
minimize \(c^T x \) \(\quad \text{subject to} \quad \begin{align*} x \in \mathbb{R}^n \quad & \quad \text{minimize} \quad c^T x \quad \text{subject to} \quad \begin{align*} x \in \mathbb{R}^n \quad & \quad \text{subject to} \quad A x = b \quad \Rightarrow \quad A x = b \quad \Rightarrow \quad Dx = f \quad \text{with} \quad \begin{cases} D = I \\ f = 0 \end{cases} \end{align*} \end{align*} \}

The “full” vector of residuals at a feasible point is:

\[
\begin{pmatrix} A \\ D \end{pmatrix} x - \begin{pmatrix} b \\ f \end{pmatrix} = \begin{pmatrix} A \\ l \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} = \begin{pmatrix} Ax - b \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ x \end{pmatrix}
\]

\[\Rightarrow\] the inequality-constraint residuals are just the values of \(x \).
Consider the standard-form linear program

\[
\minimize_{x \in \mathbb{R}^n} \quad c^T x
\]
subject to \[Ax = b, \quad x \geq 0 \]

Then \(x^* \) is a minimizer if and only if

(A) \(Ax^* = b, \ x^* \geq 0; \)
(B) \(c = A^T \pi^* + z^*, \quad z^* \geq 0; \)
(C) \(z^*_i x^*_i = 0 \) for \(i = 1, \ldots, n. \)

The vector \(z^* \triangleq c - A^T \pi^* \) is called the vector of reduced costs.

The reduced costs are the multipliers associated with \(x \geq 0. \)