General Form of a Linear Program

A general linear program (LP) can have thousands of variables and constraints. We will assume problems in the following form.

Assume that there are n variables,

$$x_1, x_2, \ldots, x_n$$

and m constraints:

- **minimize**

 \[
 c_1 x_1 + c_2 x_2 + \cdots + c_n x_n
 \]

- **subject to**

 \[
 a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n \geq b_1 \\
 a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n \geq b_2 \\
 \vdots \\
 a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n \geq b_m
 \]
Remember your linear algebra?

\[c_1x_1 + c_2x_2 + \cdots + c_nx_n = \sum_{i=1}^{n} c_ix_i = c^Tx \]

where \(x \) and \(c \in \mathbb{R}^n \)

Similarly, the \(i \)th constraint is

\[a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \geq b_i \implies a_i^Tx \geq b_i \]

where

\[
a_i = \begin{pmatrix}
a_{i1} \\
a_{i2} \\
\vdots \\
a_{in}
\end{pmatrix}
\]

The generic LP can be written as

\[
\begin{align*}
\text{minimize} & \quad c^Tx \\
\text{subject to} & \quad a_1^Tx \geq b_1 \\
& \quad a_2^Tx \geq b_2 \\
& \quad \vdots \\
& \quad a_m^Tx \geq b_m
\end{align*}
\]
Define the \(m \times n \) matrix \(A \) and \(m \)-vector \(b \) such that

\[
A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} = \begin{pmatrix}
a_1^T \\
a_2^T \\
\vdots \\
a_m^T
\end{pmatrix}
\]

and

\[
b = \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}
\]

All-inequality linear program

Linear program in generic form

\[
\begin{aligned}
\text{(LP)} \quad & \text{minimize} & & c^T x \\
\text{subject to} & & & Ax \geq b
\end{aligned}
\]

This is a “generic” linear program in so-called \textit{all-inequality form}.

Note, minimizing \(c^T x \) is equivalent to maximizing \(-c^T x\).
All-inequality linear program

How would we convert the JuiceCo problem?

\[
\begin{align*}
\text{maximize} & \quad 3x + 4y \\
\text{subject to} & \quad x + 2y \leq 100 \\
 & \quad 3x + 2y \leq 200 \\
 & \quad x \geq 0 \\
 & \quad y \geq 0
\end{align*}
\]
Properties of Linear Constraints

Consider a single linear inequality constraint \(a^T x \geq b \).

Definition

Any point \(x_0 \) such that \(a^T x_0 \geq b \) is said to be a *feasible point* for the inequality \(a^T x \geq b \).

The feasible points of an inequality constraint form the set

\[
C = \{ x \in \mathbb{R}^n : a^T x \geq b \}
\]

Definition

A constraint \(a^T x \geq b \) is *satisfied* or *feasible* at \(x_0 \) if \(a^T x_0 \geq b \), or, equivalently, if \(x_0 \in C \), with \(C = \{ x \in \mathbb{R}^n : a^T x \geq b \} \).

Definition

A constraint \(a^T x \geq b \) is *strictly satisfied* or *strictly feasible* at \(x_0 \) if \(a^T x_0 > b \).
Definition
A constraint $a^T x \geq b$ is **violated** or **infeasible** at x_0 if $a^T x_0 < b$.

Definition
A constraint $a^T x \geq b$ is **active** at x_0 if $a^T x_0 = b$. ($a^T x \geq b$ is sometimes called a **binding constraint** at x_0.)

Definition
Two constraints are **equivalent** if they have the same set of feasible points.

Examples:
- $a^T x \geq b$ is equivalent to $(\gamma a)^T x \geq \gamma b$ for $\gamma > 0$
- $a^T x \leq b$ is equivalent to $(\gamma a)^T x \geq \gamma b$ for $\gamma < 0$

In particular,
$$d^T x \leq \delta$$ is equivalent to $$-d^T x \geq -\delta$$
Geometry Review

Definition

Consider the set $\mathcal{H} = \{x \in \mathbb{R}^n : a^T x = b\}$.

- If $n = 2$ then \mathcal{H} is called a line.
- If $n = 3$ then \mathcal{H} is called a plane.
- If $n > 3$ then \mathcal{H} is called a hyperplane.

For simplicity, we refer to \mathcal{H} as a hyperplane even if $n = 2$ or $n = 3$.

A constraint $a^T x \geq b$ splits \mathbb{R}^n into two half-spaces, one containing feasible points, the other containing infeasible points.

\mathcal{H} consists of the boundary points of the feasible half-space.
Definition
A point \(y \) is said to lie on a hyperplane \(\mathcal{H} = \{ x : a^T x = b \} \) if \(a^T y = b \).

Definition
A vector \(p \) joining two points \(v \) and \(w \) lying on a hyperplane is said to lie in a hyperplane.

As \(w \) and \(y \) lie on the hyperplane \(a^T x = b \), it must hold that

\[
\begin{align*}
 a^T y &= b \quad \text{and} \quad a^T w = b \\
 \end{align*}
\]

We have \(p \) joining \(y \) and \(w \), i.e., \(p = y - w \), so that

\[
\begin{align*}
 a^T p &= a^T (y - w) \\
 &= a^T y - a^T w \\
 &= b - b \\
 &= 0 \\
\end{align*}
\]

\(\Rightarrow \) \(a \) is perpendicular to every \(p \) that lies in the hyperplane

\(\Rightarrow \) \(a \) is the normal vector for the hyperplane.
Hyperplanes with different right-hand sides are parallel (same normal vector).
The nonnegativity constraint $x_i \geq 0$ has a very simple form of hyperplane:

$$\mathcal{H} = \{x : x_i = 0\} = \{x : e_i^T x = 0\}$$

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \leftarrow \text{row } i$$

Some linear algebra review

Let x and y be n-vectors.

- $\sum_{i=1}^n x_i y_i = x^T y = y^T x$ is the inner product of x and y

- $\left(\sum_{i=1}^n x_i^2 \right)^{1/2} = (x^T x)^{1/2}$ is the Euclidean length of x

The Euclidean length of x is called the norm of x and is denoted by $\|x\|$.

- If α is a scalar, then $\|\alpha x\| = |\alpha| \|x\|$

- If $x^T y = 0$, then x and y are orthogonal
Distance of a point to a hyperplane

The normal vector \(a \) is orthogonal to the hyperplane \(a^T x = b \). The closest point to an arbitrary point \(x_0 \) is \(x_0 + \alpha a \) for some appropriate value of \(\alpha \).

The distance from \(x_0 \) to \(x_0 + \alpha a \) is

\[
\|d\| = \|x_0 + \alpha a - x_0\| = \|\alpha a\| = |\alpha| \|a\|
\]

What’s \(\alpha \)?

Distance of a point to a hyperplane

\(x_0 + \alpha a \) lies on the hyperplane \(a^T x = b \).

\[
b = a^T (x_0 + \alpha a) = a^T x_0 + \alpha a^T a
\]

\(\Rightarrow \) \(\alpha = \frac{a^T x_0 - b}{\|a\|^2} \)

Therefore, the distance of \(x_0 \) to the hyperplane is

\[
\|d\| = |\alpha| \|a\| = \left| \frac{a^T x_0 - b}{\|a\|} \right|
\]
Distance of a point to a hyperplane

Result

Given $x_0 \in \mathbb{R}^n$ and a hyperplane $a^T x = b$, the quantity

$$\frac{|a^T x_0 - b|}{\|a\|}$$

measures the perpendicular distance of x_0 to $a^T x = b$.