Summary: Simplex method for standard form

Start with B and N such that B is nonsingular. Our initial vertex is $Bx_B = b$, $x_N = 0$.
Solve $B^T \pi = c_B$;
Compute $z_N = c_N - N^T \pi$;
$[z_N]_s = \min(0)$;
if $[z_N]_s \geq 0$ then stop;
Solve $Bp_B = -a_{\nu_s}$;
\[
\sigma_i = \begin{cases}
[x_B]_i & \text{if } [p_B]_i < 0; \\
-\infty & \text{if } [p_B]_i \geq 0;
\end{cases}
\]
$\sigma_t = \min \{\sigma_i\}$; $\alpha = \sigma_t$;
if $\alpha = -\infty$ then stop;
Exchange index β_t of B with index ν_s of N;
$x_B \leftarrow x_B + \alpha p_B$; $[x_B]_t \leftarrow \alpha$;
Getting Feasible for Standard Form

How do we get a feasible basic solution of $Ax = b$ (i.e. $x_B \geq 0$)?

Example:

$$A = \begin{pmatrix} 2 & 3 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

The basis $B = \{1, 2\}$ defines a feasible basic solution $x_B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Can we find a feasible basis (i.e., vertex) in a systematic way?
\[\begin{align*}
2x_1 + 3x_2 + x_3 + x_4 &= 5 \\
x_1 + 2x_2 + x_3 - x_5 &= 3 \\
x_1, \ x_2, \ x_3, \ x_4, \ x_5 &\geq 0
\end{align*}\]

Main Idea:
- Add \(m = 2 \) new variables that define an “obvious” basis.
- Drive the new basic variables out of the basis using the simplex method.

Add positive shifts \(x_6 \) and \(x_7 \):

\[\begin{align*}
2x_1 + 3x_2 + x_3 + x_4 + x_6 &= 5 \\
x_1 + 2x_2 + x_3 - x_5 + x_7 &= 3 \\
x_1, \ x_2, \ x_3, \ x_4, \ x_5, \ x_6, \ x_7 &\geq 0
\end{align*}\]

The basis \(B = \{6, 7\} \) defines the basic solution \(x_B = \begin{pmatrix} x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} \).

The nonbasic set is \(\mathcal{N} = \{1, 2, 3, 4, 5\} \) with \(x_N = 0 \).
Minimize the "sum of infeasibilities"

\[
\begin{align*}
\text{minimize} & \quad x_6 + x_7 \\
x_6 + 2x_3 + x_4 & + x_6 = 5 \\
x_1 + 2x_2 + x_3 & - x_5 + x_7 = 3 \\
x_1, x_2, x_3, x_4, x_5, x_6, x_7 & \geq 0
\end{align*}
\]

- This is an LP in standard form (called the \textit{phase-1 LP})
- If a feasible point exists, both \(x_6\) and \(x_7\) will be zero (i.e., nonbasic) at the end of phase 1.
 - two other variables will be basic \(\Rightarrow\) phase 1 solution is an initial feasible basic solution for phase 2

\[\text{A quick note...}\]

If the first constraint had been of the form

\[2x_1 + 3x_2 + x_3 + x_4 = -5\]

we would have included the shift \(x_6\) as

\[2x_1 + 3x_2 + x_3 + x_4 - x_6 = -5 \text{ with } x_6 \geq 0\]

but we still use \(+ x_6\) in the sum of infeasibilities (the objective).
Define shifted constraints

\[Ax + Dv = b \iff (A \ D) \begin{pmatrix} x \\ v \end{pmatrix} = b \]

with

\[D = \begin{pmatrix} \text{sign}(b_1) & \text{sign}(b_2) & \cdots & \text{sign}(b_m) \\ \end{pmatrix} \]

\[\text{sign}(b_i) = \begin{cases} -1 & \text{if } b_i < 0 \\ 1 & \text{if } b_i \geq 0 \end{cases} \]

The initial basis is \(B = \{ n + 1, n + 2, \ldots, n + m \} \).

In matrix notation, the phase-1 LP is:

\[
\begin{align*}
\text{minimize} & \quad \bar{c}^T\bar{x} \\
\text{subject to} & \quad \bar{A}\bar{x} = \bar{b}, \quad \bar{x} \geq 0
\end{align*}
\]

with

\[\bar{x} = \begin{pmatrix} x \\ v \end{pmatrix}, \quad \bar{c} = \begin{pmatrix} 0 \\ e \end{pmatrix}, \quad \bar{A} = (A \ D) \quad \text{and} \quad \bar{b} = b \]

where \(e \) is the vector of ones.
We have defined two forms of the simplex method.

These methods treat the two "generic" constraint formulations:

1. **all-inequality form**: \(Ax \geq b \)
2. **standard form**: \(Ax = b, \quad x \geq 0 \)

Every LP can be converted into one of these two forms.

Which form should we use?

The best choice depends on the *shape* of the general constraint matrix.
Consider the following “base” linear program

\[
\text{minimize } d^T w \text{ subject to } Gw \geq f, \ w \geq 0
\]

where \(G\) is \(m \times n\).

This problem may be converted to either all-inequality form or standard form.

The base problem is

\[
\text{minimize } d^T w \text{ subject to } Gw \geq f, \ w \geq 0
\]

In \textit{all-inequality form}, \(c^Tx\) is minimized subject to \(Ax \geq b\), where

\[
x = w, \quad c = d, \quad A = \begin{pmatrix} G \\ I_n \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} f \\ 0 \end{pmatrix}
\]

The simplex method for all-inequality form, requires the solution of two \(n \times n\) systems.

The systems involve \(n\) \textit{rows} gathered from \(\begin{pmatrix} G \\ I_n \end{pmatrix}\).
Alternatively, we may convert the problem to \textit{standard form}.

\[
\minimize_{w \in \mathbb{R}^n} d^T w \quad \text{subject to} \quad Gw \geq f, \quad w \geq 0,
\]

Introduce \(m \) nonnegative slack variables \(s \) and define

\[Gw - s = f \quad \text{and} \quad s \geq 0 \]

In this case, we minimize \(c^T x \) subject to \(Ax = b, \ x \geq 0 \) where

\[
x = \begin{pmatrix} w \\ s \end{pmatrix}, \quad c = \begin{pmatrix} d \\ 0 \end{pmatrix}, \quad A = \begin{pmatrix} G & -I_m \end{pmatrix} \quad \text{and} \quad b = f
\]

The simplex method for constraints in standard form, requires the solution of two \(m \times m \) systems.

These systems involve \(m \) \textit{columns} gathered from \(\begin{pmatrix} G & -I_m \end{pmatrix} \).
The work associated with a simplex iteration is dominated by the cost of solving the two linear systems.

From the discussion above:

- Use the *all-inequality-form* simplex method if $m > n$, i.e.,
 \[G = \]

- Use the *standard-form* simplex method if $m < n$, i.e.,
 \[G = \]

If $m \approx n$, then both methods have comparable efficiency.

Example: If G is 50×1000

- the standard-form basis is 50×50
- the all-inequality form working set is 1000×1000.

Example: If G is 1000×50

- the all-inequality form working set is 50×50
- the standard-form basis is 1000×1000.
An algorithm best suited to the shape of G may not be available.
- e.g., your favorite code may only accept constraints in standard form

- **Duality theory** can turn a bad shape into a good shape
- Duality theory provides the link between all-inequality form and standard form

Problem conversion involves defining a *primal linear program* and converting it into another *dual linear program*

First, we define the primal problem as an LP in all-inequality form:

$$\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \geq b
\end{align*}$$

where A has m rows.
First, we define the primal problem as an LP in all-inequality form:

\[
\begin{align*}
& \text{minimize} & & c^T x \\
& \text{subject to} & & Ax \geq b
\end{align*}
\]

where \(A \) has \(m \) rows.

Assume for the moment that the problem is feasible with a bounded optimal value of \(c^T x^* \).
The optimality conditions (in active-set form) are:

\[Ax^* \geq b \]
\[c = A_T^T \lambda_a^*, \quad \lambda_a^* \geq 0 \]

Equivalently, in complementary slackness form:

\[Ax^* \geq b \]
\[c = A_T^T \lambda^*, \quad \lambda^* \geq 0 \]
\[\lambda^* \cdot (Ax^* - b) = 0 \]

\[\lambda^* \] is the "scattered" \(\lambda_a^* \)

Suppose the Lagrange multipliers are viewed as the dual variables. The optimality conditions for our primal LP

\[A^T \lambda^* = c \quad \text{and} \quad \lambda^* \geq 0 \]

can be viewed as constraints on the dual variables

\[A^T \lambda = c \quad \text{and} \quad \lambda \geq 0. \]
• Any x that satisfies $Ax \geq b$ is **primal-feasible**, and

• Any λ that satisfies $A^T\lambda = c$ and $\lambda \geq 0$ is **dual-feasible**.

If we have such x and λ, then

$$\lambda^T(Ax - b) = \lambda^T(Ax - b) \geq 0$$

Some rearrangement gives

$$\lambda^T(Ax - b) = \lambda^TAx - \lambda^Tb = c^Tx - b^T\lambda \geq 0.$$

Thus, given any primal-feasible point x

$$\Rightarrow c^Tx \geq b^T\lambda.$$

for all λ that are dual-feasible.

The **smallest value** of c^Tx is c^Tx^*. It follows that

$$c^Tx^* \geq b^T\lambda$$

for all λ such that $A^T\lambda = c$, and $\lambda \geq 0$.

The **largest value** of $b^T\lambda$ is defined by the linear program

$$\text{maximize} \quad b^T\lambda \\
\text{subject to} \quad A^T\lambda = c, \quad \lambda \geq 0.$$

This is called the **dual linear program**.
The dual linear program is

$$\begin{align*}
\text{maximize} & \quad b^T \lambda \\
\lambda \in \mathbb{R}^m & \\
\text{subject to} & \quad A^T \lambda = c, \quad \lambda \geq 0.
\end{align*}$$

The constraints of this dual problem are in \textit{standard form}.

The dual constraint matrix is the \textit{transpose} of the primal constraint matrix.

For the moment we assume that the dual problem is feasible.

We have shown the following result.

\textbf{Result (Weak duality)}

If x^* is a feasible bounded solution of the primal and λ^* is a solution of the dual, then $c^T x^* \geq b^T \lambda^*$.

The property $c^T x^* \geq b^T \lambda^*$ is called \textit{weak duality},

$c^T x^* - b^T \lambda^*$ is called the \textit{duality gap}.

The obvious question is: does $c^T x^* = b^T \lambda^*$?
Result (Strong duality)

If \(x^* \) is a feasible bounded solution of the primal, then there exists a feasible bounded solution \(\lambda^* \) of the dual with \(b^T \lambda^* = c^T x^* \).

Proof: Apply the all-inequality simplex method to the primal LP.

If Bland’s rule is used, the simplex method must either declare the problem unbounded, or terminate at a bounded solution \(x^* \).

By assumption, the primal LP is bounded, so the simplex method must terminate with a solution \(x^* = x_\ell \) and working-set matrix \(A_\ell \) and final working set be \(\mathcal{W}_\ell = \{ w_1, w_2, \ldots, w_n \} \) such that

\[
A_\ell x_\ell = b_\ell, \quad A_\ell^T \lambda_\ell = c \quad \text{with} \quad \lambda_\ell \geq 0
\]

We also know that \(\lambda_\ell \) can be scattered to form \(\lambda^* \) such that

\[
(Ax^* - b) \cdot \lambda^* = 0, \quad \lambda^* \geq 0.
\]
Thus,
\[0 = (Ax^* - b)^T\lambda^* = (Ax^*)^T\lambda^* - b^T\lambda^* = c^Tx^* - b^T\lambda^* \]
\[\implies c^Tx^* = b^T\lambda^* \]

Notice that \(b^T\lambda^* = c^Tx^* \geq b^T\lambda \) for all dual feasible \(\lambda \).

Thus, \(\lambda^* \) must be optimal for the dual problem.

\[\implies c^Tx^* = b^T\lambda^* \text{, with } x^* \text{ and } \lambda^* \text{ the primal-dual solutions.} \]

The primal and dual LPs are given by:

(P): minimize \(cx \) subject to \(Ax \geq b \)

maximize \(b^T\lambda \) subject to \(A^T\lambda = c, \lambda \geq 0 \)

If \((x^*, \lambda^*)\) is the solution to (P), then \(\lambda^*\) satisfies \(A^T\lambda = c, \lambda \geq 0\), and is dual optimal with \(c^Tx^* = b^T\lambda^*\).

Basic idea:

Solve the dual problem and construct the primal solution from the dual solution.

How do we find \(x^*\)?
minimize \(-b^T\lambda\)
subject to \(A^T\lambda = c, \; \lambda \geq 0\)

The optimality conditions for the standard-form problem are
(A) \(A^T\lambda^* = c, \; \lambda^* \geq 0\),
(B) \(-b = A\pi^* + z^*, \; z^* \geq 0\),
(C) \(z^* \cdot \lambda^* = 0\),
where \(\pi^*\) and \(z^*\) are the multipliers for \(A^T\lambda = c\) and \(\lambda \geq 0\).

However, notice that
(B) \(\implies z^* = A(-\pi^*) - b \geq 0\)

If \(x^* = -\pi^*\), then
\[z^* = Ax^* - b \geq 0 \quad \text{and} \quad z^* \cdot \lambda^* = (Ax^* - b) \cdot \lambda^* = 0 \]

\(\Rightarrow\) the optimal primal \(x\) is the negative of the optimal dual \(\pi^*\).
\(\Rightarrow\) the optimal primal residuals \(z^*\) are the dual reduced costs.
How is the basic set from the dual standard-form LP related to the primal all-inequality LP?

Strong duality implies that

\[
\text{Final dual basic set} = \text{Final primal working set}
\]

\[
A^T \Rightarrow B \triangleq A^T \triangleq \Lambda
\]

\[
\Rightarrow A_\ell = B^T \text{ defines an optimal working-set matrix for the primal.}
\]

Summary

\[
(P): \begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \geq b
\end{align*}
\]

\[
(D): \begin{align*}
\text{maximize} & \quad b^T \lambda \\
\text{subject to} & \quad A^T \lambda = c, \quad \lambda \geq 0
\end{align*}
\]

Solution \(x^\ast \) \quad Solution \(\lambda^\ast \)

Multipliers \(\lambda^\ast \) \quad \pi\text{-values} \(\pi^\ast \)

Residual \(r^\ast \) \quad Reduced costs \(z^\ast \)

Working set \(A_\ell \) \quad Basis \(B \)

The primal and dual solutions satisfy the following:

\[
x^\ast = -\pi^\ast
\]

primal multipliers \(\lambda^\ast = \text{dual solution } \lambda^\ast \) \((\lambda^\ast_i = \lambda_n^\ast) \)

\[
r^\ast = z^\ast
\]

\[
A_\ell = B^T
\]