Exercise 3.1. Let A be an $m \times n$ matrix with rank(A) = r.

(a) Define range(A), null(A^T), range(A^T), and null(A) and indicate which vector space \mathbb{R}^n or \mathbb{R}^m each is a subspace of.

- range(A) = $\{y \in \mathbb{R}^m : y = Ax, \ x \in \mathbb{R}^n\}$
- null(A^T) = $\{y \in \mathbb{R}^m : A^Ty = 0\}$
- range(A^T) = $\{x \in \mathbb{R}^n : x = A^Ty, \ y \in \mathbb{R}^m\}$
- null(A) = $\{x \in \mathbb{R}^n : Ax = 0\}$

(b) If rank(A) = m, what can you say about the relative sizes of m and n?

If A has full row rank, then $m \leq n$.

(c) Similarly, if rank(A) = n, what can you say about the relative sizes of m and n?

If A has full column rank, then $n \leq m$.

(d) Show that range(A^T) \cap null(A) contains only the zero vector.

Let $y \in$ range(A^T) \cap null(A). Then $Ay = 0$ and there exists some vector x such that $y = A^Tx$.

Then $0 = Ay = A(A^Tx)$.

If we apply x^T to both sides of this equation, we get

$$0 = x^TA^Tx = (A^Tx)^T(A^Tx) = \|A^Tx\|^2.$$

We must have $A^Tx = 0$ and therefore, $y = 0$, which shows that the only vector in the intersection of range(A^T) and null(A) is the zero vector.

Exercise 3.2. Assume that a nonzero vector b may be written as $b = b_R + b_N$ such that $b_R \in$ range(A) and $b_N \in$ null(A^T), for some nonzero matrix A.

(a) Show that b_R and b_N are unique.

Assume b_R and b_N are not unique. Then there exist vectors $\tilde{b}_N \in$ null(A^T) and $\tilde{b}_R \in$ range(A) such that $b = \tilde{b}_R + \tilde{b}_N$. Then,

$$b = \tilde{b}_R + \tilde{b}_N = b_R + b_N \implies 0 = (b_R - \tilde{b}_R) + (b_N - \tilde{b}_N).$$

Since both null(A^T) and range(A) are subspaces, we must have $(b_R - \tilde{b}_R) \in$ range(A) and $(b_N - \tilde{b}_N) \in$ null(A^T). Since the zero vector is the only vector in both null(A^T) and range(A), $b_R - \tilde{b}_R = 0$ and $b_N - \tilde{b}_N = 0$, as required.

(b) Show that b_R and b_N are orthogonal.

By definition, there exists a nontrivial v such that $b_R = Av$. Then $b_R^Tv = (Av)^Tv = v^TA^Tb_N = 0$.

Since both null(A^T) and range(A) are subspaces, we must have $(b_R - \tilde{b}_R) \in$ range(A) and $(b_N - \tilde{b}_N) \in$ null(A^T). Since the zero vector is the only vector in both null(A^T) and range(A), $b_R - \tilde{b}_R = 0$ and $b_N - \tilde{b}_N = 0$, as required.
(c) Assuming both are nonzero, show that \(b_R \) and \(b_N \) are linearly independent.

To show that \(b_R \) and \(b_N \) are linearly independent, we write

\[
\alpha_R b_R + \alpha_N b_N = 0.
\]

(We want to show that \(\alpha_R \) and \(\alpha_N \) must be zero.)

If \(b_R \neq 0 \), multiplying by \(b_R^T \) and using the fact that \(b_R^T b_N = 0 \) gives

\[
\alpha_R b_R^T b_R = 0,
\]

which implies that \(\alpha_R = 0 \). Using a similar process when \(b_N \) is nonzero, we conclude that \(\alpha_N = 0 \). Thus, \(b_R \) and \(b_N \) must be linearly independent.

Exercise 3.3. Consider the linear system of equations \(Ax = y \) for some \(m \times n \) matrix \(A \).

(a) Assume \(y = y_R + y_N \) with \(y_R \) in \(\text{range}(A) \) and \(y_N \in \text{null}(A^T) \). Write down a condition on the range- or null-space portion of \(y \) such that \(Ax = y \) is not compatible.

For \(Ax = y \) to be compatible, \(y \) must be completely in the range of \(A \). If \(y = y_R + y_N \), then we must have \(y_N = 0 \).

(b) What can you say about the dimension of \(\text{null}(A) \) if \(Ax = y \) is compatible and has infinitely many solutions? What can you conclude about the rank of \(A \) in this case?

If \(Ax = y \) has infinitely many solutions, then the nullspace of \(A \) must be nontrivial, i.e., that its dimension is greater than 0.

We know that \(\mathbb{R}^n = \text{range}(A^T) \oplus \text{null}(A) \). Then \(n = \text{rank}(A) + \text{dim}(\text{null}(A)) \). Therefore, using the first part of this problem, we can conclude that \(\text{rank}(A) < n \) (that \(A \) has linearly dependent columns).

Exercise 3.4. Consider the matrix \(A \)

\[
A = \begin{pmatrix}
1 & -2 & -1 & 3 \\
2 & -4 & -2 & 6 \\
0 & 2 & 0 & -3
\end{pmatrix}.
\]

(This problem should be possible by inspection, without the use of Julia or Matlab.)

(a) What is the rank of \(A \)?

\(\text{rank}(A) = 2 \).

(b) Write down a basis for \(\text{range}(A) \) and \(\text{range}(A^T) \).

The range of \(A \) is the span of the columns of the matrix \(A \) (this is equivalent to the set of all \(y \) where \(Ax = y \) is compatible).

On inspections, we can see that the first and third columns of \(A \) are multiples, as are the second and fourth. We can therefore define the range of \(A \) as

\[
\text{range}(A) = \{ \alpha \begin{pmatrix}
1 \\
2 \\
0
\end{pmatrix} + \beta \begin{pmatrix}
1 \\
2 \\
-1
\end{pmatrix} : \alpha, \beta \in \mathbb{R} \}.
\]

Similarly, the range of \(A^T \) is the span of the rows of \(A \). Thus,

\[
\text{range}(A^T) = \{ \alpha \begin{pmatrix}
1 \\
-2 \\
-1
\end{pmatrix} + \beta \begin{pmatrix}
0 \\
2 \\
3
\end{pmatrix} : \alpha, \beta \in \mathbb{R} \}.
\]
(c) Define a nonzero vector c such that $A^Ty = c$ is incompatible and briefly explain why the system is incompatible.

We know that if $A^Ty = c$ to be incompatible, then $c \notin \text{range}(A^T)$. Using part (b), we can choose any nonzero vector c that is not a linear combination of $(1 -2 -1 3)^T$ and $(0 2 0 -3)^T$.

One possibility is

$$c = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$