Chapter 3: Second order equations

Homogeneous equations \(y'' + p(t)y' + q(t)y = 0 \)
- Homogeneous equations with constant coefficient: \(ay'' + by' + cy = 0 \)
 - Characteristic equation: \(ar^2 + br + c = 0 \)
 - Real and distinct roots \(r_1 \) and \(r_2 \): \(y_1 = e^{r_1 t} \) and \(y_2 = e^{r_2 t} \) are the fundamental solutions
 - Complex roots: \(r_1 = \lambda + i\mu \), \(r_2 = \lambda - i\mu \); Euler’s formula: \(e^{it} = \cos t + i\sin t \); how to find real-valued solutions
 - Repeated roots: \(r_1 = r_2 \); fundamental solutions are \(y_1 = e^{r_1 t} \) and \(y_2 = te^{r_1 t} \)
- Reduction of order
 - One solution \(y_1(t) \) is known for \(y'' + p(t)y' + q(t)y = 0 \)
 - Find a second solution by setting \(y(t) = v(t)y_1(t) \) for some function \(v(t) \)
 - Plug \(y(t) \) into the differential equation to find an appropriate \(v(t) \)

Nonhomogeneous equations \(y'' + p(t)y' + q(t)y = g(t) \)
- General solutions are of the form \(y(t) = c_1y_1(t) + c_2y_2(t) + Y(t) \), where \(y_1 \) and \(y_2 \) are fundamental solutions for the corresponding homogeneous equation, and \(Y(t) \) is a particular solution of the nonhomogeneous equation
- Method of undetermined coefficients
 - Used to solve \(ay'' + by' + cy = g(t) \), where \(g(t) \) is a “simple” function – exponentials, polynomials, sines and cosines
 - If \(g(t) = (a_0 + a_1 t + \cdots + a_n t^n) e^{\alpha t} \) \(\begin{cases} \sin \beta t \\ \cos \beta t \end{cases} \),
 then assume \(Y(t) \) has the form
 \[
 Y(t) = [(A_0 + A_1 t + \cdots + A_n t^n) e^{\alpha t} \sin \beta t \\
 + (B_0 + B_1 t + \cdots + B_n t^n) e^{\alpha t} \cos \beta t] t^s,
 \]
 where \(s \) is the number of times \(\alpha + \beta i \) is a root of the characteristic equation
 - Plug \(Y(t) \) into the differential equation to determine coefficients
- Variation of parameters
 - A more general method for solving \(y'' + p(t)y' + q(t)y = g(t) \)
 - The nonhomogeneous solution is \(Y(t) = u_1(t)y_1(t) + u_2(t)y_2(t) \), where \(y_1 \) and \(y_2 \) are fundamental solutions of the homogeneous equation and \(u_1 \) and \(u_2 \) are defined as
 \[
 u_1(t) = - \int \frac{y_2(t)g(t)}{W(y_1, y_2)(t)} \, dt \quad \text{and} \quad u_2(t) = \int \frac{y_1(t)g(t)}{W(y_1, y_2)(t)} \, dt
 \]
 (This was achieved by assuming that \(u_1'y_1 + u_2'y_2 = 0 \) and also by plugging \(Y(t) \) into the differential equation to come up with a second condition on \(u_1(t) \) and \(u_2(t) \))
Chapter 5: Power Series Solutions

- Modifying a power series (shifting index, rewrite with \(x^n\) terms, etc), radius of convergence, interval of convergence
- \(P(x)y'' + Q(x)y' + R(x)y = 0\), where \(P(x), Q(x),\) and \(R(x)\) are polynomials
- A power series solution has the form \(y(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^n\) about a point \(x_0\) such that \(P(x_0) \neq 0\) (ordinary point)
- A recurrence relation for the coefficients \(a_n\) is found by plugging in \(y(x)\) into the differential equation and matching up powers of \(x\)