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ABSTRACT

We will discuss several interrelated problems on diameters of graphs (i.e., the
maximum distance among all pairs of vertices). Of particular interest are graphs
with small diameters after deleting few edges. We will investigate extremal and
algorithmic aspects of these probiems as well as their applications in communica-

tion networks.

I. Introduction

In a graph G with vertex set V(G) and edge set E(G), the distance d(u,v) between
two vertices u and v is the length of a shortest path joining u and v. The diemeter of

G, denoted by D(G), is the maximum distance among all pairs of vertices in G.

Diameter problems arise in network optimization in a natural way. As early as the
1960's, Erdos and Rényi [32] asked the problem of scheduling airplane flights between n
cities so that it is possible to fly from any one city to another with only a few intermedi-
ate stopovers along the way (subject to capacity constraints of the airports). Many
problems in data communication or circuit layout eptimization can often be related to a
few key invariants of which the diameter is an important one. In particular, when the
number of edges in a path is roughly proportional to the delay or signal degradation
encountered by messages sent along the path, the diameter is proportional to the worst

case performance bounds.

Here we will give several similar but somewhat different versions of the diameter

problems. The first two problems were attributed to Elspas in a 1964 paper [31]. How-
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ever, they can be traced back to E. F. Moore in 1960 (see [41]):

Problem I: Given k and D, construct a graph with as many vertices as possible with
maximum degree £ and diameter D,

Problem 2: Given n and k, construct a graph with minimum diameter on n vertices

and maximum degree k.

These two versions offer a somewhat different point of view when evaluating various

constructions {detailed later in Section 2).

Vijayan and Murty [S5] investigated the reliability of graphs with diameter con-
straints. They posed the following problem:
Problem 8: Given n, D, D' and 5, what is the minimum number of edges in a graph on
n vertices of diameter D with the property that after removing s edges the remaining

graph has diameter no more than D"

Of course, there is an analogous version with degree constraints.
Problem {: Given n, D, D', k and s, what is the minimum number of edges in a graph
on n vertices with maximum degree k, diameter D, satislying the property that after

removing s edges the remaining graph has diameter no more than D"

These problems have attracted the attention of many researchers. There is a large
literature described in survey papers [2,3,5,24,27,44). However, the solutions are far

from satisfactory and most of the problems remain unsolved.

Instead of edge deletion, we can also consider the complementary problem of edge
augumentation.
Problem 5: For a given graph G, it is of interest to find the optimum way to add ¢
edges so that the resulting graph has minimum diameter.
Problem 6: For a given graph, try to add t vertex disjoint edges to reduce the diameter

as much as possible.
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In this paper, we briefly survey the known results, report on recent progress in the
area and point out some interesting open problems. This paper is organized into seven

sections. lo Section 2, we discuss explicit constructions, probabilistic methods and a

third "hybrid” approach. In Section 3, diameter bounds for various altered graphs are
examined. In Section 4, we study edge-minimum graphs with small diameters after edge
deletion. In Section 5, we investigate the extremal graphs of Problem 3 and 4. In par-
ticular, we focus on methods for constructing graphs with small diameter and degree. In
Section 6, we consider diameter algorithms and computational complexity. In Section 7,

we conclude with severa! generalizations and variations of diameters.

2. Paeudo-random constructions

For many combinatorial problems, the following intriguing situation occurs: It is
very difficult to construet explicitly a "good” configuration. However, by probabilistic
arguments, it can be shown that "almost all" configurations are good. By an explicit
construction, we mean a deterministic method which produces arbitrarily large graphs,
and which does not depend on any random process. One notorious example is that of
Ramsey graphs. One can easily show that if the edges of a complete graph on n vertices
are randomly colored red or blue, then the largest red clique or blue clique is of size
c\iogn

¢ logn. However, in all known censtructions, monochromatic cliques of size ¢

cannot be prevented {see {34]).

Why are explicit constructions desirable? On one hand, random constructions can
be easier to analyze probabilistically. However, random graphs are harder to control,in
the sense that one needs n°® entries to describe the edges, whereas a systematic approach
may use much less memory (as in a recent paper 28° which requires only k integers to
construct a k-regular “good” graph). In addition, after choosing a random graph. an
efficient testing scheme is required to ensure that the graph is indeed “good”. Further-

more, in many problems, explicit constructions are much better for other reasons such as
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actually finding paths from one vertex to another as required in many routing and sort-

ing problems.

For the diameter problems that we are interested in here, it turns out that random
graphs often provide near optimum sclutions. Recall the first problem of minimizing the
diameter for a given number of vertices n and degree k. It is easy to establish a lower
bound, the so-called Moore bound, for the diameter. Namely, for any vertex v there are
at most k vertices at distance ! and, in general, there are at most l:(;t—l)"'l vertices at
distance J. |
Therefore,

nS<l4k+ o+ k1) T4 - k(=1
and we get

D 2logeyn - %

On the other hand, Bollobis and de la Vega {16 proved the following

Theorem 2.1. {16] A random k-regular graph has diameter

log,_yn +log, ylogn + ¢
with probability close to ljwhere ¢ is a small constant (at most 10) and all k-regular
graphs are considered to have equal probability.

S0, a random regular graph usually has its diameter very close to the optimum. To
look at this from the view of Problem 2, it follows that a random regular graph has
degree k and diameter D if the number of vertices is at least (k—1)2~1 f(2k log (k1))

which is fairly close to the Moore bound.

The best explicit construction for graphs with degree k and diameter D are the

de Bruijn graphs and their variations which have very simple and nice structure. The

basic construction consists of the vertex set {{a;,..., ¢, ):0; =1,2,..., 5}, with
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(ay, ..., 4, adjacent 1o (ay,...,4a,,8) for any 6. Such graphs have degree k = 2s
and diameter D =r with n = l%r vertices. The number of vertices is off by a factor

of 27 from the Moore bound (which may be closer to the right answer). For small
values of D and k, better constructions exist which will be discussed further in Section

5.

In the past few years, much progress has been made on constructive methods for
another important combinatorial problem -- the construction of expander graphs.
Expander graphs come up in a variety of contexts such as sorting, permutation net-
works, computational complexity, and many extremal graph problems. Roughly speak-
ing, an expander graph is a graph G with the property that for any subset 5 of vertices
with |S| not too large, say }S| < n /2, the number of neighbors N(S) of S is large, say
N(5) > ¢ |5| where ¢ > 1 depends only on the maximum degree of G.

Many interesting techniques have been used to prove the expanding properties of
various constructions; see Margulis '47], Gabber and Galil 38}, Tanner {33; and Alon {1 .
In particular, Tanner (53] pointed out the following relationship between the second
largest eigenvalue and the expanding property of a k-regular graph. For any set X of
vertices, the number of neighbors N(X) of X satisfies

kx|
(=N X[ fn+°

N(X) > (1)

Recently, Lubotzky, Phillips and Sarnak [46] have constructed k-regular graphs
with X satisfying |A\| < 2\/1:_—_1. which is best possible. These graphs, which they term
Ramanujan graphs, have diameter 2log;_, » + ¢, which is about twice as large as the
optimum. Although these graphs compare unfavorably with de Bruijn graphs (as far as

diameters are concerned), the expanding properties lead to a third approach.
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The pseudo-random approach can be viewed as a “half-way" solution by blending a
good construction with a small amount of randomness. Recently, Bollobds and Chung
(17) proved that the graph obtained by adding a random matching to the n-cycle C, has
diameter very close to the optimum value. (A matching is & maximum set of vertex-
disjoint edges). They also prove a general theorern which asserts that by adding a ran-
dom matching to a (kK —1)-regular graph with certain expanding properties (for example
if A < k — ¢ for any positive ¢, the expanding property by {2} is encugh), the resulting
graph has diameter about log,_,n, which is the correct order of the best possible value.
In particular, therefore, adding a random matching to the Ramanujan graph results in a
graph with near optimum diameter. Further discussions on the change of diameters
while adding edges (not necessarily a matching) or deleting edges will be given in the

next section.

3. Diameter bounds for altered graphs

We now present a sequence of examples starting with the path P, on n vertices.
How small can the diameter be made by adding ¢ edges to the path P,? Clearly the

diameter of P, is n —1 and, by adding one edge to P,, we can form the cycle C, which
is of diameter [g} What if we add two edges to P,? Suppose we first add one edge to

form C, and then add the second edge (in any way), the resulting graph has diameter

%J However, the minimum diameter by adding two edges to P, is approximately -g—,

which is much smaller than l% l for large n. The following results of Chung and Garey

[24] state:

Theorem 3.1. [24] By adding t edges to P, the resulting graph always has diameter D

n
t+1

satis{ying D > tl-fli Also, there is a way of adding ¢ edges so that D < +3.
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Theorem 3.2. [24] By adding ¢ edges to a graph of diameter D(G), the resulting graph

always has diameter D' satisfying

b > DIE)-t

- t+1

Furthermore, the extremal cases (in this case, the minimum diameter over all graphs

with diameter D plus ¢ edges) are achieved by paths.

This makes it more interesting to study the minimum diameter D(P,,t) obtained
by adding t edges to the path P,. Recently, Schoo-ne, Bodlaender and van Leeuwen 52
improved these bounds for D(P,, ) and very recently, Kerjouan |43 further improved
the bounds to

n+t—1 n+t—4

> D(P,,t) 2 for t even ,
t+1 = = 41
and BABZS > p(pat) 2 L fortodd .

Still, the exact values are not vet determined. It seems reasonable to conjecture the fol-
lowing:

Conjecture 3.3

[Py ty= =L

for  even ,
+1

and [(Pyt)= Dt L -:icl_s for t odd .

The problem of adding edges to an n-cycle C, is also interesting. Sometimes a

cycle is preferable for network topologies because of its symmetry and balance. In [24] it

was shown that the minimum diameter by adding ¢ edges te C, is approximately

when ¢ is even, and N when ! is odd. The best choice of ¢ new edges to add to C,
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to minimize the diameter depends on the parity of t: if ¢ is odd, form a star of ¢ edges;

if ¢ is even, form the union of two stars.

Suppose it is required that the resulting graph should have a small maximum degree

or be almost regular (for example, the maximum degree differs from the minimum

E]

degree by at most 1). Then the resulting graph cannot have diameter < —, as was

1

shown in {17].
Theorem %.4. [17] By adding a matching (that is, [;uj vertex-disjoint edges), the result-
ing graph can have diameter at most logon + loglog n + ¢ where ¢ is a small constant.

This is very close to the minimum possible diameter for a graph on n vertices and
maximum degree 3.
Theorem 8.5. {17] By adding a matching to a {k—1)-regular expander graph (or just a
{k—1)-regular graph with the property that N(X) =]y:d{X,y) < i} has at least
% +€

c(k—2)" vertices for some constant ¢ and for any 1 < log,_, n}, then the

resulting graph can have diameter at most log,. n + log, _;log n + ¢’ for some constant
c'

Using similar arguments as in [17], it can be easily extended to the following more
general case.

Theorem 3.6. By adding t vertex-disjoint edges to P, or C,, the resulting graph can

have diameter C % log t and this is best possible (to within a constant factor).

4. Extrernal problems for altered graphs

In this section, we focus on the extremal problems, namely, Problems 3 and 4. The
goal is to minimize the number of edges in a graph so that after deleting any choice of a

small but fixed number of edges the resulting graph has small diameter. The original
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{ormulation of Vijayan and Murty is the problem of determining g{n, D, D', s}, which is
the least number of edges in a graph on n vertices with diameter at most D such that
after removing any s edges, the remaining graph still has diameter at most D’. From
Theorem 3.1 we know that when D' is large, say D' > (s+1)(D+1), the value of
9(n,D, D’ s)is the same as g(n, D, n—1,s). In other words, the problem is reduced to
finding minimum-edge graphs on n vertices with diameter D and edge connectivity s.
This case was solved by Bollobds [10,14].

Theorem {.1.

g(n, D, D" s)=g(n,D,n~1,5)

for  D'>(s+1){D+1)

Theorem {.2.(10]

n s—1 n s=1
- 1+ -t < .2 -1, < = 14+ —
5 s+ J'”-—l] ] ¢g(n.2m,n=1,s) 7 s+ +'__!]

where ¢ depends on m and s,

The general problem of finding f{n, D, D’, s} (especially when D’ is not too large in

comparison with D) remains far from resolved. There are many papers on this problem,
such as Bollobis, [9,10,15], Bondy and Murty (18], Caccetta [20,21,22] and Bollobés and
Erdds [13], Bollobés and Eldridge [12] and Boltobds and Harary [14]. Most of the results
concern the case D,D' < 4 and s =1. ln the study of g(n, D, D' s), one simplified ver-
sion is of particular interest.
Problem {.2: What is the minimum number g{n, D, s) of edges in a graph on n vertices
with the property that after removing s edges the remaining graph has diameter at most
D?

Even the case of s=1 (which was conjectured in [14,15]) was unresolved until very

recently.
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Theorem 4.5, [27)

n—1—¢

g{n,D,1}) = n—-1 + 2
15 2l

where e =1 if D =1 (mod 3}, and 0 otherwise.

For general s, it is easy to see that g(n,D,s) > (s+1)n/2. In 27' it was also

shown that there exist graphs which give the following upper bound for g{n, D, s).

Theorem §.4. [27]
g(n,D,s) < (s+1}n/2 + e(s+1)n D s 00143
for some constant ¢.

Problem {.5: Determine g(n,D,s) for s > 2.

The solutions for g(n, D, 1) and for the bound on g(n, D,s), & > 2, are graphs with
some vertices of large degree. It is of interest to ask the analogous questions with degree
constraints.

Problem §.6: What is the least number g,(n, D, s) of edges in a graph on n vertices and
with maximum degree k satisfying the property that after removing any s edges, the
remaining graph has dizmeter at most D?

Problem |.7: What is the least number g;(n, D, D’,5) of edges in a graph on n vertices
of diameter at most D with maximum degree k satisfying the property that after remov-

ing any s edges the remaining graph has diameter at most D?

6. Extremal graphs with bounded degree and small diameter

In this section, we will examine the extremal problems on graphs with as many ver-
tices as possible, say n(k, D) vertices, satisfying degree at most k and diameter at, most
D. As discussed in Section 2, the maximum number n(k, D) of vertices in a graph with

diameter D and maximum degree k£ can be bounded above by
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n(k,D} € 1+k+ -+ +k(k=1)°"" = ngk,D)

The upper bound nyk, D), called the Moore bound, is provably unreachable [41]
for almost all nontrivial values of k and D. The only graphs, called Moore graphs,

which achieve the Moore bounds must be one of the following [41]:
(iy D=1, (k+1)-cliques

(i) k=2, (2D +1})cycles

(iii) D =2 and k =3, the Petersen graph
{iv) D =2 and k =7, the Hofman-Singleton graph

(v) (possibly) D =2 and k =57.

Problem 5.1 {41): Is there a Moore graph of diameter 2 and degree 577

The current known bounds for n(k, D) for general k and D are indeed very poor.
For the upper bound, the only result beyond n{k, D) < ny{k, D) (except for [i}{v)} was

obtained by P. Erdos, S. Fajtlowicz and A. J. Hoffman [34] who proved
n(2k,2) < ng(2k,2)-2 for £ > 1
Problem 5.2. [34]: Is it true that for every integer ¢ there exist ¥ and D such that
nk,D) < nolk,D}—¢?
As for the lower bound, random regular graphs have near optimum diameters {18,
Namely, the probabilistic lower bound for n(k, D) is

1—e

b= -
D) 2 3D eg (k1) (k=)™

This bound is considerably better than the constructive lower bound. In the remainder

of this section we focus on the constructive lower bounds.

For larger & and D, the constructions are mainly de Bruijn graphs and their varia-

tions. We recall that the de Bruijn graph B(r,s), for given integers r and s, has 5" ver-
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tices represented by r-tuples (a;, a5 -~ - ,q,) where g, € {1, - - - s}, and (2, 8,..... 2,)
is adjacent to (ay, - * *,a,,8) and (b,a,,....0,.;} forany b ¢ {I,...,s}. It is easy to see
that B(r,s) has diameter r and degree 25. This gives, constructively,
up = limsup N(k,D)/No(k,D) > 27°

(We note that in considering constructive lower bounds, it is sometimes only required to
establish an infinite set of good constructions instead of requiring good constructions for
each n. Therefore we consider the limsup of n{k,D)/ng{k, D) instead of liminf as in
some other papers |2,3)).

One of the major problems on this topic is to improve the comstructive lower
bounds.
Problem 5.8: For each D, construct graphs for infinitely many values of k£ with
(2—€)~2 ny(k, D) vertices and of degree at most k, diameter at most D for some fixed
€>0.

For some small fixed values of I}, there are explicit constructions of large classes of
graphs with roughly ny{k, D) vertices (asymptotically for large k) using combinatorial
structures known as generalized n—gons, and various product constructions :4,6!. The

best known constructive lower bounds pp, for D < 10, are listed here.

np |3l 13T |25t jarTet | 47790 | 5200

The de Bruijn graph can be improved slightly by taking the following induced sub-
graph B'(r.s) (also known as the Kautz graph). The vertices of B'(r,s) are r-tuples

@, ay,...,a,) with a, #a,,, for 1 <v¢ <r—1 and a,# a,. It is easy to see that
1ne2 r 1 T+l =% =



B'(r.s) bas s(s—1)'"" vertices and of degree 2(s—1), which compares favorably to
B(r,s). Still, it does not affect the major term asymptotically.

Another technique for improving the constructions is the method of covering codes
which can be best illustrated by the following example for the case of k =3.

The de Bruijn graph for k=3 and general D has a vertex set consisting of all
binary r-tuples. A vertex (a,...a,), @ €{0,1}, is adjacent to (ay,...,q,,a;) to
(ay,..-s8,_,1—a,). Such a graph, denoted by B(r), obviously has diameter 2r or
2log, n, where n is the number of vertices. Leland and Solomon [45| gave a complicated
proof for a construction with diameter 1.5 logyn. Here we will show a simple construc-
tion using covering codes.

A subset S of binary {-tuples {0,1} is called a covering code of radius R if for any
t-tuple v, there exists an element s in § such that the Hamming distance between v and
$ is no more than R.

We will fold the graph B,(t) by S as foliows: The new graph, denoted by B,(t}/S
has vertices each of which is a set {(e,...,¢,} + 5 : s ¢ §} (The addition is performed
componentwise modulo 2). Since such folding preserves edges, the resulting graph bas
degree at most 3. Furthermore, the graph has 2 /[S| vertices and diameter ¢ + R.

If we take S to be two points {0,0, - - *,0) and (L, 1,...,1), it is clear that R =t /2.
Therefore the diameter is t + R = 1.5t = 1.3(logan +1). The idea of folding graphs was
suggested by Tom Leighton (private communication}.

Jerrum and Skyum [42] constructed graphs on n vertices with degree 3 and diame-
ter 1.47 log,n by a complex scheme. Here again we can obtain this bound by folding a
modified version of a de Bruijn graph.

We start with a graph with a vertex set consisting of all ternary ¢-tuples and

(t—1)-tuples. (a, ..., a), g, €{0.1,2}, is adjacent to (a,,...,a;, a;) and to (ay cooarq)
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Such a graph B,(t) has degree 3 with 3' + 3'~! vertices of diameter 3. Now we take a
covering code S comsisting of (0,0,...,0), (1,1,...,1) and (2,2,...,2). Clearly it has

radius 2t/3. After folding B3(t) by S the resulting graph has a diameter

Tt 7
3"3 logyn = 1.47 logy n. For k=3, 1.47 log, n is the best known constructive lower

bound.

Problem 5.4: Construct graphs on n vertices with degree 3 and diameter

7 log2
<(; E:—a'-f)logzn for € > 0.

In general, the idea of folding by covering codes can be extended to a more general
setting by considering cosets of isomorphisms on special graphs. Very recently, Mike
Fellows and others [36] succeeded in using the Golay code and the folding techniques to
construct large graphs for other values of k and D. The following table for the best con-
structions of graphs with degree at most k and diameter at most D currently known has

been improved in many entries compared to those given in the table in {4,6).

6. The computational complexity of determining the diameter

For a given graph G on n vertices a straightforward way to determine the diameter
D(G) is as follows:
(1) Find the breadth-first search tree [S4] for each vertex v of G. Thereby determine

the maximum distance d, = max d(u,v).
(2) Compare d, and determine D{G) = max d,.

Since the time requirement (54, for finding a breadth-first search tree is O(n+e¢),
the preceding algorithm has complexity O(n? + ne) where ¢ = |E(G)|. This algorithm
has, in fact, calculated the distances among all pairs of vertices. The problem of finding

all distaoces is a well-studied problem in graph algorithms (see [54] in a more general

setting.) M. L. Fredman [37] has an O(n*(log log n flog n)'/*) algorithm for finding dis-
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]

1 10 20 L 70 128 180 % 482 708
4 15 40 35 34 ™ 8§58 2 4352 13 058
§ M L] 174 532 27U 3 420 7 000 180 521
L] 32 10% 13 "2 787 13 064 32 254 "0 188 370
7 50 122 90 1 550 10 548 35154 " T4 9 2358 1 218 672
] 57 200 07 2 008 92 70 308 134 380 820 380 3984 120

] i 585 1248 5150 74 908 215 883 “ween 3019 432 15 888 400

10 1l 850 1755 10 000 132 889 484 837 1784 720 T4 484 47 059 200

11 M 715 3200 14 025 150 884 808 778 4 044 492 21 345 930 179 755 200

12 |13 780 1680 21320 354 30 1727180 | 2370180 43 493 %00 456 133 800

13 || 134 B45 4 580 1 s 531 440 2657 M40 | 10 257 408 72 541 560 762 816 400

14 (183 7Y § 200 51 240 804 481 6 200 460 | 29781208 | 164 755080 | 1 865 452 880

15 (| 188 | 1215 | 11712 58 560 | 1417 249 7088 240 | 35947 392 | 282740976 | 3830 089 376

16 | 197 | 1800 | 14640 | I32 496 | 1771 560 | 14 882 850 | 65 082 544 | 585652704 | 7 304 000 858

tances of all pairs, which is faster than the straightforward algorithm for high density

graphs.

The problem of finding the diameter of a graph is just to find the furthest pair of
vertices while pairs with small distances can be ignored. To take advantage of this, we

can use the matrix multiplicatien algorithm to reduce the running time, as follows.

Let A denote the adjacency matrix of G, i.e,, A = (a,-‘.) is an n X n a matrix with
a;; =1if and only if {v;,v;} is an edge. It is not difficult to see that in the k* matrix
product A* ={A4 +1)¥, the (V. ;entry is nonzero if and only if there is a walk of length
at most & from v; to v;. Therefore, the diameter D(G) is the least integer D with the
property that A2 has all entries nonzero. The current champion for matrix multiplica-

tion is due to an algorithm of D. Coppersmith and S. Winograd {29] and requires run-

ning time O(n?%®). The time required in computing D(G) for G is then no more than
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O(n*3 log D), since we can first find the least integer k so that A" has only nonzero
entries by n*3™ log D steps and then use binary search to determine D in another
2378 log D stepa.

For the complexity lower bound, since every vertex and edge must be examined to
determine the diameter, the obvious lower bound is n+e. There is, of course, the prob-
lem of further narrowing the gap beltween the upper and lower bounds on the complex-
ity of determining D(G).

Problem 6.1: Find a fast algorithm for determining the diameter of a graph.

In particular, it would be of interest to find an n®™" algorithm without using matrix
multiplication. It is easy to show that the diameter of a tree can be determined in 2n
steps. It would also be of interest to find an efficient algorithm for determining the
diameter of planar graphs.

Problem 6.2: Fiand 20 o{n?} algorithm for determining the diameter of a planar graph.

Instead of finding the diameter of G, George and Lin [39] asked the question of
finding a pair of pseudoperipheral vertices, i.e., a pair {z,y} of vertices such that
d(z,y) > d{v,y) and d{z,y) > d{z,v) for any vertex v in G. A greedy algorithm for
this problem can be described as follows:

Step (1) Start from any vertex ¢ and find a farthest vertex u from v.
Step {2) If v is also furthest from u, {u,v} is a solution. Swop. If there is a vertex w
with d{u,w} > d{u,v), go to (1) and replace v by w.
Onpe interesting question is the following.

Problem 6.8: Is it true that this greedy algorithm must stop before eVan steps?

There exists a graph together with a starting point such that the greedy algorithm
takes ¢V iterations {see [49]). We remark that J. K. Pachl has another algorithm for

solving this problem with worst case time Vne . (Note that each iteration in the greedy
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algorithm takes e steps). However, the complexity of the greedy algorithm still remains

open.

7. Variations and Generalizations

There are many interesting variations of the diameter problem. A natural invariant

of a graph is the average distance, which is defined to be the average value of the gis-
tances among all l; ] pairs of vertices (see [30,40,50]). In a network model, the average

distance corresponds to the average delay whereas the diameter concerns the maximum
delay.

Winkler raised several prolems of average distance bounds for altered graphs {56].
Recently, Beinstock and Gyori [7] solved one of Winkler’s problems by proving that for
any 2-edge-connected graph there is an edge whose removal will result in a graph with
average distance at most 4/3 of the average distance in the old graph. The author has
studied the relation of average distance and other graph invariants and showed, for
example, that the independence number is no more than the average distance [26].

Another direction is to study several disjoint short paths instead of the shortest
path between two vertices. In many network models it often occurs that the messages
are sent from one point to another using many possible routes.

We define the k-distance d,{u, v) between two vertices u and v to be the minimum

average lengih of k edge disjoint paths joining u and v, if k such paths exist. The k-

diameter is the maximum k-distance over all pairs of vertices. A particularly interesting
case is the flow diameter. For two vertices u and v, we define the flow distance 4*(u, v)
to be the k-distance where k is the maximum number of edge-disjoint paths joining u
and v. Similarly, we can define the flow diameter to be the maximum 4*(u,v) among

all pairs of vertices u and v. The notions of k-diameters and flow diameter which arise
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in many communication problems and in distributed computing certainly lead to a rich
area for further research.

We can also consider diameters in algebraic structures such as groups (or fields and
algebras). For a group with a fixed set of generators, the diameter is the minimum
number m such that every group element can be represented as a product of at most m
generators. Clearly the diameter of a group is just the diameter of its Cayley graph.
Such graphs are often very useful in explicit constructions. The following problem arises
from one such contruction:

Problem 7.1: Consider GF(p') for some prime number p. Every element in GF (p'} can
be viewed as a polynomial in z of degree < t and with coefficients in GF(p). That is,
GF(p') = GF(p)[z])/(F(z)} for some irreducible polynomial F(X) of degree k. The
problem is to determine minimum m such that every element in GF(p') can be written

as a product
{xr +a,} - (£+a,) for ¢ e GF(p)

For sufficiently large p, is it true that ¢ + 1 linear terms are enough?

Very recémly, it bas been shown [28] that every element in GF(p') can be written
as a product of no more than 2t + 1 linear terms.

Many problems in self-adjusting data structure and games can be viewed as diame-
ter problems. Namely, each configuration corresponds to a vertex. Each possible
“move” corresponds to an edge. Dizmeters of such a graph provide exactly the worst
case bound. Some related references can be found in [54].

There are many analogous problems for directed graphs or special graphs. There is
also the vertex-deletion version for the diameter bounds. However, those problems will
not be covered here.

Of course, we have barely scratched the surface of the possible diameter problems
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here. Most old problems, extremal and algrithmie, are still far from being resolved. On

the other hand, interesting new problems are constantly arising. Clearly, this fertile area

presents an open-ended challenge to mathematical researchers.
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