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A tableau is a rectangular array of points with the property that, for all i, the number of points
in the ith row is greater than or equal to the number of points in the (i + 1)st row. The hook length
h; is defined to be the total number of points which are either directly to the right or directly
below the (i, j)-point together with the (i, j)-point itself. It was conjectured by Logan and Shepp
that a tableau is always uniquely determined (up to reflection) by its set of hook lengths. In this
paper, we give several families of counterexamples to this conjecture. However, by extending the
definition of hook length, we show that a tableau is always uniquely determined (up to reflection)
by its extended set of hook lengths.

1. Introduction

A tableau* is a rectangular array of points with the property that the length of
the ith row is greater than or equal to the length of the (i + 1)st row. We illustrate
an example in Fig. 1.

Fig. 1. A tableau A.

We may denote the tableau A = A(r;=r,=---=r) by the set {(i,j): 1<j<r,
1=<i =<t} where r; is the length of the ith row.
The reflection A * of the tableau A is defined by

A ={(,):G,j)EA}

* The terminology and definitions follow that of [1, 6].
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The reflection of the tableau in Fig. 1 is shown in Fig. 2.

Fig. 2. The reflected tableau A *.

The complement A of the tableau A has row lengths r, — r, where 1 <i <t and
ri>r, as shown in Fig. 3.

Fig. 3. The complementary tableau A.
The hook length h; of the (i, j)-point of the tableau A is defined by
hij = (ri *l)+(C! _])+1

where ¢; is the number of points in the jth column of the tableau A. In other words,
h;; is the total number of points directly to the right or directly below the (i, j )-point
in A together with the (i, j)-point itself. As shown in Fig. 4, h,, = 7, the number of
points in the shaded hook-shaped region.

Fig. 4.

The hook length tableau of a tableau A is a tableau with h;; replacing the point at
(i,j)-entry. The hook length tableau for the A of Fig. 1 is given in Fig. 5.
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Fig. S.

Let H(A) be the set of hy, (i,j) € A, counting multiplicity. We will use square

brackets to indicate that repetitions are to be counted. ([1, 1, 3] is often denoted by
[12, 3].) Of course, H(A)= H(A*).

The set H () of hook lengths was first considered by Nakayama [5] in connection
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with modular representation theory, although it was implicit in the work of Young
on the representation of the symmetric group [8, 9]. Since then, H(\) has been
studied extensively and has played an important part in the development of group
representation theory (see [2, 4, 7]).

A conjecture which was raised by Logan and Shepp in connection with their
recent paper [3] is that A is uniquely determined by H(A) up to reflection, i.e.,
H(\)=H(\')implies A’ = XA or A’ = A*. In this paper, we show that the conjecture
is false. Counterexamples are given in Section 3.

Because of the fact that h; = hy; + hiy — hyy, (i, ]) € A, (see Section 2), h; could be
defined more generally to be

hij=h1j+hi1_h11, lﬁisrl, lsjscl.

With this extended definition, h; is negative for (i,j) € A and positive otherwise.
It can easily be seen that h; cannot be zero.

Deﬁne I:I(/\)=[hi,~:1Si$r1, 1Sj$€1].

We note that H(A) is the union of the set of hook length H(\) and the set of
negative values of hook lengths H(X).

We ask the following question: Is A uniquely determined by H(\) up to
reflection? In section 4 we show that the answer is affirmative.

2. Some basic properties of H(A)

First, we state some basic properties of hook lengths. The proofs can be found
in [1].

Fact 1. For all i <i', j <j', we have h; + hiy = hy + hy.

Fact 2. Given (i,j)€A, the sequence (Bijy Bijory oo oy iy iy — My,
hij = hiczj ..., hi; — he,;) is a permutation of the set of integers {1,2,...,h:;}. In
particular, we have the following:

Fact 3. Let h,=n. The sequence (hi,hp....,hi,,n—hy,n—hs,..

*

n —h. 1) is a permutation of {1,2,...,n}.
Fact 4. The hook length tableau is determined by the set {h., hy, ..., h,,}C
{1,2,...,n}, where n = h,,. Also, every subset of {1,2,...,n} which contains n

determines a hook length tableau with hy, = n.
Fact 5. Suppose we are given a subset A C{1,2,...,n} with n € A. Let A4 be
the tableau determined by A. Then we have

H(M ) =la-a:a€ A, ac{0,1,2,...,n}\A, a >aj,
H)=[a-a:a€A ac{0,1,2,...,n}\A].

Fact 6. Aa- is the reflection of A, if and only if

A*={n—-a:a€{0,1,2,...,n}\A},
i.e.,
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/\iz AA*.

In this paper, we will show that A is uniquely determined up to reflection by the
set H(Aa) but not by H(A,).

3. Counterexamples

Let n = 9= h,, and consider the sets A and B given by
A = {172,4’ 8’9}’
B ={2,4,5,9}.

It is easily seen that BZ{n —a:a €{0,1,2,...,9}\A}= A *. Hence A, is not
the reflection of As. The hook length tableaus for Aa, Ag are shown in Fig. 6.

9 8 4 2 1 9 5 4 2
6 5 1 8 4 3 1
4 3 6 2 1
3 2 3
21 2

1
H(\a) H(As)
(@) (®)

Fig. 6.

However, since H(Ax) = H(Ag) =[1%,2°,3%,4%,5,6,8,9], then A does not deter-
mine H(A) up to reflection.

There are, as a matver of fact, infinitely many such pairs of tableaus with the same
set of hook lengths. One such family is given as follows.

Let n =9 and choose

A.={1,2,n—-5,n—-1,n},
B, ={2,n~-5n—4,n}.

A direct calculation shows that A, # B* and
H(Aa,) = H(Ag,).

Another such family is given below.
Let n =12 and choose

A.={1,2,4,n—7,n-2,n},
B, ={1,4,n—7,n-5,n}

Similarly we have A, # B and
H(Aa,)=H(Ag,) forn=12.



Some results on hook lengths 37

It is not known how many such families exist.

4. The uniqueness of H())

Let A, B be subsets of {0,1,2,...,n} withn €EA NB and 0 £ A U B. We now
show that H(As)=H(A,) implies B=A or B=A* ie, A is uniquely deter-
mined by H(A4) up to reflection.

Let p(X)=2{_,x". For any S C{0,1,2,...,n}, we define

fix) =2 x'

i€S

. 1 ifi€s,
= > 8 (i)x' where 8 (i) =

i=1

0 otherwise.

It is clear that fa«(x)=p(x)—x"fa (1/x).
From Facts 1 and 5, it is easily seen that

a)fart) = 3 ax™,

where ; is the number of times i occurs in H(Aa ). H(A1) = H(As) will then imply

fa () fa-(x) = fo (x) fo-(x).

In order to prove the main theorem we need the following lemma.
Lemma. If H(As)=H()\s) then i € A\B if and only if n —i € A\B.

Proof. Since fa (x)fa-(x)= fa (x)fa-(x), we have

£ () =7 (5)) = o) (P00 = w75 (1)) 0
i.e.,
POa (1)~ fa 0D =" (fa )fa (1) = Fo 0t (£)) ®

We note that the coefficients of x’ and x ™ are the same in the expansion of
fa(x)fa (1/x). Hence, the coefficients of x"** and x"* in p(x)(fa (x)— fs (x)) are
also the same. Thus,

P)(fa(x)~fo(x)) =

n
i=

%' (20 8a (j)x! —Z) 8 (j)x”)

n n

2 (8 ()~ 8a ))x'™

0 j=0

0

Il
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-3 (3 Gam-ss(my) st

n—1

+ 3 (3, 6atm)= s (m) &

Hence we have

z(aA(j)—sa(j))=Z:(6A(j)—aB(j)) fori =0,1,...,n
Then

n—i-1

2@ )-8 ()~ 5 ()8 G)= 5 (G ()-8 G)= 3 (5x )0 0)

ie.,
84(i)—8s(i)=06a(n—i)—8s(n—i) fori=0,1,..., n.

This implies immediately that i € A \B if and only if n ~i € A \ B. This proves the
lemma.

Now we let A’= A\B, B'=B\A and X = A N B. We can rewrite the equality
(1) as

G )+ fu)) (p00) =" (1 () 410 (1)) =

=G )+ fu) (p )= (1 (3 ) + () -
) (p )= (e (F) # i (5))) = e fn () 27
— o) (p@) =5 (1 (5) +fo- (5))) = e @)fer () 5™ Y

From the lemma we know that

Then

x"fa <%> = fa(x)

and
)1
B’ x = B'(x).
Hence (4) is equivalent to the following equation:

) (p ) =5 ()~ fu0) = e )

= 1o ) (p0) = 7% (5) ~ ful0) = £ ()

ie.,
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G )= for) (p ) =i () = e ()= o)~ fo) = 0.

Assume A # B. Then fa(x)# fs-(x). We will have

P() =% (1) = () = fa)~ fo () = 0
P x"fx (3) = ) = Fu )+ fo),

ie.,

pwr=s (1 () 11 1) - o

pe)=x"s (3) = fo o),
far(x) = fu (0),
A*=B.

Ag is then the reflection of A4. Hence we have proved the following theorem.

Theorem. The hook length set X is uniquely determined by H(\) up to reflection.

5. Some related problems

The preceding results suggest a number of related problems, which we now
mention:

(i) What are the necessary and sufficent conditions for A to be uniquely
determined by H(A) up to reflection?

(ii) For a given tableau A, how many tableaus have the same hook length set as
H(A)?

(iif) In Section 3, we illustrated two families which contain infinitely many pairs
of tableaus with the same set of hook lengths. Can the structure of such families be
characterized? In the given examples, we use one parameter. Are there such
families with two or more parameters?

(iv) Let 7, be the number of tableaus which are not uniquely determined by the
hook length set H(A) with the largest hook length being n, i.e.,

7. = |[{{x, A *}: There exists some A’ with H(A)= H () N AAN A AA* and the
largest number in H(A) is n}|.

In the Table 1, we list the value of 7, for some small values of n. What is T, In
general?
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Table 1

n 1234567 89 10 11 12 13 14

™ 000000002 4 8 10 14 26

References

[1] C. Berge, Principles of Combinatorics, Mathematics in Science and Engineering, Vol. 72 (Academic
Press, NY, 1971).

[2] J.S. Frame, G. de B. Robinson and R.M. Thrall, The hook graph of the symmetric groups, Canad. J.
Math. 6 (1954) 316-323.

[3] B.F. Logan and L.A. Shepp, A variational Problem for Random Young Tableaux, Adv. Math. (to
appear).

[4] P.A. Macmahon, Combinatory Analysis (Cambridge University Press, London, 1915; reprinted by
Chelsea, New York, 1960).

[5] T. Nakayama, On some modular properties of irreducible representations of G,, Jap. J. Math. 17 (1)
(1940) 89-108; 17 (2) (1940) 411-423.

[6] G. de B. Robinson, Representation theory of the symmetric group Mathematical Expositions, No.
12 (University of Toronto Press, Toronto, 1961).

[7] C. Schensted, Longest increasing subsequences, Canad. J. Math. 13 (1961) 179-191.

[8] A. Young, On qualitative substitutional analysis, Proc. London Math. Soc. 34 (1902) 361-397.

[9] A.Young, On qualitative substitutional analysis, Proc. London Math. Soc. 28 (2) (1927) 255-292.



