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Abstract. For n points in three-dimensional Euclidean space, the number of unit
distances is shown to be no more than cn®°. Also, we prove that the number of
furthest-neighbor pairs for n points in 3-space is no more than en®”, provided no
three points are collinear. Both these results follow from the following incidence
relation of spheres and points in 3-space. Namely, the number of incidences between
n points and ¢ spheres is at most cn®*r** if no three points are collinear and
n*?> > n'* The proof is based on a point-and-line incidence relation estabiished
by Szemerédi and Trotter. Analogous versions for higher dimensions are also given.

1. Introduction

In [12], Szemerédi and Trotter have established the following result: for n points
and r lines in the Euclidean plane with v =t = (;), the number of incidences

between points and lines is no more than cn®*r*’>, This result is very useful in
dealing with various geometric configurations (see [ 12]). Efforts have been made
to extend this result to higher dimensions involving n points and 7 spheres.
However, the number of such incidences can be as large as nt if the positions
of the points and spheres are allowed to be arbitrary. In this paper we obtain
the following incidence relation for restricted sets of points and spheres in 3-space.

Theorem 1. For n points and t spheres in 3-space the number of incidences between
the points and spheres is at most ¢(n**1*°+tn'"”+ n), provided no three centers
of the spheres are collinear.

This follows from Theorem 2 with a relaxed restriction.
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Theorem 2.  For n points and t spheres in 3-space, the number of incidences between
points and spheres is at most c(n*’1*°+ ' + n) if, for any choice of three points,
the number of spheres containing the three points is bounded above by some
constant ¢'.

There are analogous versions for high-dimensional Euclidean spaces as well
as the following version for the plane.

Theorem 3. For n points and t circles in the plane, the number of incidences between
points and circles is at most c(n**£*+n+1).

The above theorem has been deduced independently by W. T. Trotter and
also by Beck (see [3]). For the sake of completeness, we give a proof in
Section 2.

Theorem 4, For n points and t (d —1)-spheres in d-dimensional Euclidean space,
the number of incidences between points and spheres is at most

C(nld* 1/0d +2)!:d +-11/(a‘+2)+ ”,Jla'—z)fcdbl)+ n)
provided no set occurs as an intersection of i spheres in more than ¢’ ways where ¢’
is a constant (and ¢ depends on ¢'), for some i>> 1.

As an immediate consequence of Theorems 3 and 4, we have the following:

Theorem 5.  For n points in d-dimensional space, the number of d-spheres containing
at least k points is at most

nd+l

c kd+2

if k> c'n'“ 2“7 and no set occurs as an intersection of i spheres in more than
¢’ ways where ¢, ¢’ are constants {and ¢ depends on c').

A number of problems can be solved using these theorems, some of which we
now describe. We expect this incidence relation will be very useful for many
other extremal problems in high-dimensional space as well.

First, we consider the unit distance problem. Let F,(n) denote the maximum
possible number of occurrences of a particular distance, say the unit distance,
among n points in d-dimensional Euclidean space. There is a large literature on
the unit distance problem in the Euclidean plane. Erdos [6] first raised this
problem in 1946 and he showed that F,(n) < n"/?. This was subsequently improved
by Jozsa and Szemerédi [9], and Beck and Spencer [4]; and the current best
upper bound cn*? is due to Spencer etal. [11] in a 1984 paper. The best lower
bound currently available for F,(n) is n'**/'°81°8" which is obtained by consider-
ing the square lattice {see [6]). For three-dimensional space, Erdos [6] proved that

cn*?loglog n < Fy(n) < en®?.
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This was improved by Beck [3] to
F;(H)< nl3,’8+u(l)‘
We will show:

Theorem 6. In three-dimensional Euclidean space, the number Fi(n) of unit

distances among n points is no more than cn®”>.

Theorem 7. In d-dimensional Euclidean space the number F,(n) of unit distances
among n points is no more than cn’ */***?_ provided no three points are in ¢’ spheres
for some absolute constants ¢ and ¢'. :

Next, we consider the furthest-neighbor pair problem. For given n points in
the plane, two ordered vertices {u, v) are said to be a furthest-neighbor pair if v
is a furthest point from u. In other words, d{u, v) = max,, d(u, w). The problem
of interest is to determine the maximum possible number G,(n) of furthest-
neighbor pairs for n points in d-dimensional space.

It was shown by Avis [1] that G,(n)=3n—3 or 3n—4. Edelsbrunner and
Skiena [5] proved that G,(n)=2n+2|n/2] —3. For n points in 3-space, G,(n)
can be as large as n°/4 as shown in [2]. Let H;(n) denote the maximum possible
number of furthest-neighbor pairs for # points in d-dimensional space where no
three points are collinear. In [5] it was proved that

H,(n)=n>".

The proof technique is similar to that in [2] where Avis et al. showed that the
number of occurrences of the diameter is no more than cn®? among n points
positioned in the surface of a convex body in 3-space.

We will prove the following:

Theorem 8. In three-dimensional Euclidean space, the number H,(n) of furthest-
neighbor pairs among n points is no more than cn®’®| provided no three points are

in a line.
This can also be generalized to higher dimensions.

Theorem 9. The number H;(n) of furthest-neighbor pairs among n points in
d-dimensional space is no more than cn®*""*?_ provided no three points are in a line.
14 P P

This paper is organized as follows: in Section 2 we establish the incidence
relation of circles and points stated in Theorem 3. In Section 3 we prove the
incidence relation of spheres and points in 3-space stated in Theorems 1 and 2.
In Section 4 we consider higher dimensions and prove Theorems 4 and 5. In
Section 5 we focus on the unit distance problem and prove Theorems 6 and 7.
In Section 6 we deal with the furthest-neighbor pair problem and we show
Theorems 8 and 9. Section 7 contains concluding remarks and related problems.
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2.  An Incidence Relation for Points and Circles

We start by investigating the number of incidences of circles and points in the
plane. Suppose there are n points and ¢ circles. We show that there are at

most c{(n**r**+n+1) incidences between circles and points and thus prove

Theorem 3.
Now suppose the ith point v; is in x; circles. Suppose the jth circle C; contains
¥; points and let f(v;, C;) be 1 if v; is in C; and 0 otherwise. We have

LA, )= x=Yy=X
k4 i J

We consider the following two possibilities:

Case 1; 1= n, Since we can map all these x; circles to straight lines by an affine
mapping which takes v; to infinity, the number of incidences of n points and
these x; circles is no more than cn**x¥? if x,> n"2 Otherwise the number of

X; _
incidences is at most n +2(2) = cn, (Throughout the paper we use ¢ to dénote

some appropriate constant.) The total number of such incidences is at most
c(n**x¥?+n). This is, for fixed i,

T f(0, G f(w, ) = c(n*x¥ 4 n).

On the other hand, we have

T S, G)f(o, G) =X (32’1)

Therefore
X X
X34 ple op?/3 %/34_ 1,2 2
cn ne=cn zix R YRR
This implies ¢((nt)**+1)= X, provided 1= n.
Case 2: n=t. We consider, for fixed i and j,
Y flo, C)f(o, C)=2.
k

On the other hand, we have

T f(o, COfm, G) =% (’;)
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Therefore

2122—)&2—1{.
Zn 2
This implies X = c((nt)**+n), provided t=n. This completes the proof of
Theorem 3.
By a stereographic projection of the 2-sphere to the plane, we have the
following:

Corollary 1.  In a 2-sphere, the number of incidences between n points and t circles
is at most ¢(n****+ n+1).

This result is used to derive the incidence relation between spheres and points
of the next section.

3. Incidence Relation of Spheres and Points in 3-Space

In this section we only consider points in three-dimensional Euclidean space.
We first prove Theorem 1 by showing that the number of incidences between n
points and ¢ spheres is no more than ¢(n*°t**+ tv/n+ n), provided no three
centers of the spheres are collinear,

Suppose the ith point v; is in x; spheres and the jth sphere S; contains ¥
points. Let f(v, §;) be 1 if v, is in §;, and 0 otherwise. The total number of
‘neidences is X =} x; :Zj ¥;- Now we consider, for a fixed k,

Z Z f(vr', Sj)f(vi’ Sk) =Z TS}m Skl‘
Joi i
Since no three centers of the spheres are collinear, all the circles S;n S, are

distinct. The number of incidences of circles and points is exactly Zj IS, S,|. By
using Corollary 1, we have

YIS A Sl =yt +y + 1),
i

On the other hand, we have
X
> fle, Sj)f(vi’ S)=Y (2)
ijk i

Therefore, by using Corollary 1, we get

; X x

34374y 4y = (xa)z__k

cg(yk yett) )_; 2 o 2
X X
(X X+ )= -2,
2n 2

This implies ¢(n**t*°+ tv/n+n) > X. This completes the proof of Theorem 1.
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We note that the noncollinearity is needed only to deduce the fact that the
S; n Sy are all different circles. The same conclusion can be reached if any circle
can only be contained in a bounded number of §;’s. Therefare Theorem 2 follows
immediately.

4. Incidence Relation of Spheres and Points in Higher Dimensions

In this section we consider points in d-dimensional space with d = 4. We want
to show that for n points and t spheres (or (d —1)-spheres to be exact) in
d-dimensional space, the number of incidences is no more than
e(ntdTN/ @ ETDAAED) 4 (=271 4 Yy, provided some mild restriction on the
points is satisfied. The proof is very similar to that of Theorem 1 except we
require that, for any i < d, the intersection of any i (d —1)-spheres is a unique
(d —1i)-sphere (only depending on the choice of the i spheres). Alternately,
we can assume that any (d —i)-sphere which contains more than d — i+ 1 points
can be the intersection of i (d —1)-spheres S; for a bounded number of choices
of [ spheres. The statement of Theorem 4 is sufficient 1o derive the con-
clusion that the total number of incidences is at most ¢(p'?*!/ @2 d+nid+2
ppld - n).
Namely, using the analogous definition in Section 3, we get

c(thj(de_l_tu}—l)/(d—:]X‘:df_?)/(d—Z)_'_X)

d/(d+1) dfi(d+1) (d=3)/(d-2)
ECZ(J’IJ fyj + ity + yi)
k

= ‘E.kf(lin S;) f(v;, Si)

()
X X
2n 27

=
=

By straightforward calculation we get

X < C(n(d+l)/(d+ljlld+1i/(d+2?+In[d*Z)/(d*1)+")

and Theorem 4 is proved.
Theorem 5 is an immediate consequence of Theorem 4. Suppose there are ¢
spheres containing k points or more among n points. Then we obtain

kISC(n(d+l),’fd+2)t(d+1)/(d+2)+tn(dkz]/(dfl)_l_n)‘

By straightforward manipulation we obtain

e o +2
t=ent Tl g

fn(d--2),"(d—-1

provided k=¢ '. This version is often useful in extremal problems.
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5. Unit Distances

In this section we study the problem of unit distances in three and more
dimensions. The number of unit distances among n points is exactly the number
of incidences between n points and n unit spheres centered at n points. Since
any circle can be in at most two of the n unit spheres, we can use Theorem 2 to
deduce that there are at most ca®” unit distances. Hence Theorem 6 follows.

For d =4, some restrictions are required on the points since there are sets of
n points which have cn” unit distances. For example, we can take n points in
4-space with n/2 points of the form (a, b, 0,0) where a’+ b*=1 and other n/2
points of the form (0,0, ¢, d)} with ¢’+d*=3}. Clearly, there are |n?/4] unit
distances here. '

It is not hard to check that the intersection of d distinct unit spheres in d-space
contains at most two points. However, the condition that any three points are in
a bounded number of spheres is needed so that we can then use Theorem 2 to
show that there are at most cn®~**“*?) unit distances which proves Theorem 7.

6. Furthest-Neighbor Pairs

The number of furthest-neighbor pairs H,(n) among » points in 3-space is exactly
the number of incidences of n points and n spheres S, centered at the given
points v,. To use Theorem 2 to derive Hy(n) = cn®*, we only have to know for
any three points, in how many spheres S, they all belong. It is not difficult to see
‘hat if three points are in three spheres then the centers of the spheres are collinear.
Using the noncollinearity in the assumption of Theorem §, the conclusion follows
immediately from Theorem 2.

The d-dimensional case for d > 3 follows from the proof of Theorem 2. Namely,
for any fixed i, the subsets formed by taking intersection of i spheres S, are all
distinct because no three centers of the spheres are collinear.

7. Concluding Remarks

In this paper we discuss upper bounds for the sphere-and-point incidences. It is
natural to ask how close these bounds are to the truth. Can we find constructions
which will give good lower bounds? The lower bound n** log log n in the unit
distance problem in 3-space (6] is, of course, a lower bound for the number of
incidences of spheres and points. This lower bound, however, has not been
improved for 40 years. If we consider a slight variation, that is the circle-and-point
incidences on the 2-spheres, the lower bounds seem to be more difficult to obtain.
{We cannot use lattice points any more.) Recently, Erdds and Pach found a lower
bound of order n log* »# for unit distances among n points on the 2-spheres,
while the upper bound is ¢cn*?. It would also be of interest to find a superlinear
lower bound for the following probiem:

Given n points on a 2-sphere, how many circles can there be with the property
that each circle contains four points or more?
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We also remark that on the problem of furthest-neighbor pairs for n points
in 3-space where no three points are collinear, the lower bound for the number
H;(n) of furthest-neighbor pairs remains very poor. There is currently no super-
linear lower bound for H.(n).

After the original preparation of this paper, we learned of new improvements
in the bounds obtained here, by Edelsbrunner, Guibas, Sharir, and others (private
communication); in particular, they obtain a bound of O(n*/***) for the number
of unit distances in 3-space, using a considerably more intricate analysis.
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