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DIAMETERS AND EIGENVALUES

F. R. K. CHUNG

1. INTRODUCTION

In a graph (or directed graph) G, the distance d(u,v) of two vertices is
defined to be the length of the shortest path (or directed path) joining u to
v. The diameter D(G) is then the maximum distance among all (}) pairs
of vertices. The underlying graphs of various communications networks are
often required to have small diameters so that information can be transmitted
efficiently in the network.

Let M denote the adjacency matrix of G with eigenvalues 4,, 4,, ... where
|A;1 > |4, > --- . Suppose G is k-regular so that all row sums and column sums
of M are equal to k. A well-known theorem of Frobenius states that 4, = k.
Let A denote |A,|]. We will show that the diameter is small if 4 is small

compared to k. In particular, we will derive the following upper bound:
(1) D(G) < [log(n — 1)/log(k/A)].

This improves a previous bound given by Alon and Milman [2] who showed
that D(G) < 2/2k/(k — u)log, n (by considering the expanding properties
of G) where uz is the second largest eigenvalue of M M. If G isa di
rected graph, (1) still holds provided that the eigenvectors of M satisfy certain
properties. We note that for undirected graphs, M is symmetric and 4 = 4.
However, for directed graphs, M is not symmetric, in general, and only the
inequality u > A holds. As we shall see in the next section, a graph has nice
expanding properties if u is small. When u is large and A is small, the graph
is not necessarily an expander. Still, it can often be shown to have a small
diameter.

In the first half of the paper, we will give the proof of the diameter bounds
using eigenvalues. In the second half, we will consider families of graphs whose
eigenvalues can be precisely identified. These graphs have rather simple struc-
tures. Namely, a k-sum graph on n vertices can be specified by a set of k inte-
gers between 1 and n. A pair {i,;} is an edge if and only if i+ j (mod n) is
one of the k integers. We also define directed graphs, the so-called k-difference
graphs, where i — j is an edge if i —j is one of the specified integers. We will
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188 F. R. K. CHUNG

demonstrate that certain choices for the & integers result in small values of A
by using the following inequality on character sums, which was recently proved
by N. M. Katz [25]. Although this inequality was motivated by the construction
of sum graphs, it is of potential use in many other problems.

Let ¥ denote a nontrivial complex-valued multiplicative character defined
on an extension field E over a finite field K with dimension 7. Then for any
x € E such that E = K(x) we have |}, W(x +a)| < (¢ - 1)/[K].

These k-sum graphs and k-difference graphs can be shown to be good ex-
panders with small diameters. The diameter bound is closely related to the
following theorem.

For a prime p in GF(p') ~ GF (p)[x]/(F(x)), every element in GF(p') can
be represented as a product of x + i, i € GF(p), such that the number of the
X + 1 ’s needed is no more than 2t + 4tlogt/(log p — 2log(t — 1)).

The paper is organized as follows. In §2, we give the proof of the diam-
eter bound (1). In §3, we first briefly discuss constructive methods and the
expanders. Then we construct the sum graphs and difference graphs. In §4 we
consider the eigenvalues of sum graphs and difference graphs. These eigenval-
ues can be bounded from above by considering character sums. We then show
these graphs are expanders with small diameters. In §5, we discuss some other
extremal properties and applications of these graphs.

2. DIAMETER BOUNDS

Theorem 1. For a k-regular graph G with second largest eigenvalue A (in ab-
solute value), we have D(G) < [log(n — 1)/log(k/A)] .

Proof. Let M denote the adjacency matrix of a k-regular graph G on n ver-
tices. We want to determine D, which is the minimum value of m such
that M™ has all entries nonzero. Let v* denote the n-tuple with all entries
1. Let u, u,,...,u, denote orthonormal eigenvectors with eigenvalues 4,
Ay, ..., A, where u, =v"/\/n, A, =k,and [A| <A for i #1.

Then clearly we have M =37 A.u,u; where u, isan n by | matrix and u,
denotes the transpose of u, .

(Mm)l',S = Zl:n(ulul*)r 5
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=k"/n— A" —-1/n)
>0

if (k/A)">n-1.
This implies D(G) < [log(n — 1)/log(k/A)] and the proof for Theorem 1 is
complete.

We remark that the diameter upperbound is tight for some graphs, such as
the complete graphs.

Theorem 1 can be extended to nonregular graphs by slightly modifying the
preceding proof.

Theorem 2. For a graph G with eigenvalues A, 4,, ... where [A\| > |A,| > ---,
and w = min, |(u,),|, we have D(G) < [log((1 — w”)/w?)/log(1A,1/I4,])1-

Before we proceed to the directed case, we first consider a generalized inner
product for vectors in C". The product of two vectors u and v is defined as the
sum of the product of u, and the conjugate of v,. Thatis (u,v) =3 u,-0,.
We say u and v are orthogonal if (u,v)=0.

Theorem 3. Suppose a directed graph G has outdegree k and eigenvectors of G
form an orthogonal basis. Then we have D(G) < [log(n — 1)/log(k/A)], where
A is the second largest eigenvalue (in absolute value) of the adjacency matrix M
of G.
Proof. The proof is quite similar to that of Theorem 1, except that X" now
denotes the conjugate transpose of a matrix X . That is (X *)r ,=(X), . The
rest of the calculation is straightforward and will be omitted.

We remark that the condition that the eigenvectors form an orthogonal basis
is essential. The directed graph with the following adjacency matrix 4 has
eigenvalues 2, 0, —1,and —1.

0
1
A_l
1

e i

1 0
1 0
00
00

However the diameter of 4 is oo, as pointed out by Herbert S. Wilf (personal
communication).

3. SUM AND DIFFERENCE GRAPHS AS EXPANDER GRAPHS

Expander graphs first came up in connection with permutation networks in
the early 1970s [30]. Since then the fundamental properties of expander graphs
have led to many applications in a variety of areas ranging from extremal graph
theory [7, 10] to parallel sorting [1], graph pebbling [27, 33, 32], connection
networks [4, 30], and computational complexity [23, 33, 39]. An expander
graph G is a graph with the property that any set X of vertices, with |X|
small in comparison with |V (G)|, has at least B|X| neighbors, where S is
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proportional to the average degree of G. It is not difficult to check that ran-
dom regular graphs (in fact, almost all r-regular graphs) are expander graphs.
Like many other combinatorial problems, “good” configurations are assured by
probabilistic arguments (often by showing almost all are good), but construct-
ing a “good” configuration often turns out to be a harder problem. (By an
explicit construction, we mean a scheme to specify, for each n, or for infinitely
many #, a “good” configuration.) There are many reasons why explicit con-
structions are preferable. While random graphs are easy to obtain and easy to
analyze probabilistically, efficient testing algorithms are required (and typically,
are not available) to ensure the graph is indeed good. In addition, it takes more
memory, namely, n’ entries, to write a random graph, whereas a systematic
approach often has a much shorter description, e.g., such as the k-regular ex-
pander graphs we will discuss here which require only X numbers to specify the
graphs. For finding paths among vertices in many sorting or routing problems,
explicit constructions are particularly crucial.

It has long been a major thrust of so-called constructive methods (in con-
trast to the probabilistic approach) to study various methods that yield good
constructions. In the past several years major progress has been made on con-
structing expander graphs (although many other problems remain unresolved,
as we mention in §5). Margulis [29] constructed linear-sized expander graphs
with certain undetermined factors of expansion. Gabber and Galil [21] gave a
family of linear expander graphs with an effective estimate on the expansion
coeflicients. Other constructions appeared in Schmidt [36], Alon and Milman
[2], Jimbo and Maruoka [24], and Buck [12]. The Jimbo-Maruoka method uses
elementary but rather complicated linear algebraic tools. The analysis of the
other constructions used techniques from harmonic analysis. One important
step in analyzing expander graphs is to establish the relation between the ex-
panding properties of a k-regular graph and uz , the second largest eigenvalue
of MTM . Tanner first proved [38] that for any set X of vertices of G, the
number of neighbors N(X) satisfies

K| X|

(k* = p)| X | n+ p*

Hence u provides very good control of the expanding property (also see [2]).
The smaller u is the more “expanding™ the graph is. How small can u be as
a function of k? Alon and Boppana (see [28]) proved that the liminf of u
is at least 2v/k — 1 (as n approaches infinity). On the other hand, Lubotsky,
Phillips, and Sarnak [28] recently applied some results of Eichler [16] on the
Ramanujan conjectures [36] and constructed expander graphs, which they called
Ramanujan graphs, with 4 <2vk —1.

In this paper we will construct a new family of expander graphs. Recall that a
k-sum graph on n vertices can be specified by some set of k integers between
1 and n. A pair {i,j} is an edge if and only if i+ j (mod n) is one of the k
integers. We can also define the difference graphs where i — j is an edge if i—j

N(X) 2
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is one of the specified integers. We will show that the appropriate choices for
the set S of the & integers will ensure that A and y are small. Thereby, the
corresponding sum or difference graphs determined by S are expanders with
small diameter.

We will now describe the following selection of the k-set S.

Let p denote a prime number. Let us form the finite field GF(p') by adjoin-
ing to Z , aroot w of an irreducible ¢th degree polynomial F(x) in Z oLx].

Now take an element g in GF(p') that generates GF”(p') and consider the
p elements w, w+1, ..., w+p—1. Clearly, w+i can be expressed as gd'
for some d,, and these d;,, 0 <i < p—1, will form the set S. In other words,
the d,’s can be viewed as the discrete logarithms with base g of the w +i’s.

Suppose there are two distinct sets of ¢ numbers in S, say afi1 , di2 s s ,dl.,
and d e .d o with equal sums. In other words,

d+d,+--+d, =d; +d, +---+d, =x.

By considering g~ , we get
(w+iw+i) - (w+i)=(w+j)(w+j,) - (w+j,).

We now have a nonzero polynomial of degree < ¢ that is satisfied by w . This
contradicts the fact that w satisfies an irreducible polynomial of degree ¢.
This shows that all z-sums of .S are distinct modulo p’ — 1. This fact was first
observed by Bose and Chowla [10] and they proved the following theorem.

For a prime number p and a fixed integer t, there exists aset S of p integers
d,,... ,dp with 1 <d; < p' such that all t-sums (i.e., sums of t numbers in
S, allowing repetition) are distinct.

We now consider a sum graph G on n = p' — 1 vertices determined by the
p-set S={d,....d p}. We note that although the choices of the values of
d;’s depend on the choice of the primitive element g, it can be easily seen that
the resulting graph is, in fact, independent of g since the sum graph G can be
viewed as having vertex set GF(p')", with an edge from u to v if uv = w+i
forsome i€ {0,1,... ,p—1}.

We will show in the next section that the second largest eigenvalue of G
is small and thus G has good expanding properties. We can also generalize
the construction of the difference graphs in the following way. For a group H
together with a subset H' that is stable under conjugation, we define a graph
with vertex set H and two elements ¥ and v forming an edge if uwv™! isin
H'. Let M denote the adjacency matrix whose eigenvalues and eigenvectors
can then be determined (see [15]). Namely, M has eigenvalues 4 ) for each
irreducible representation p of G given by

b= ¥,

P heH’
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where ¥ p(h) =Trp(h) and the A , oceurs with multiplicity df, where d , is the

dimension of p. The sum graph with edges (i, j) for ij € H' has eigenvalues
4, if 4, is real or +[4,| if 4, is not real.

4. THE EIGENVALUES OF THE k-SUM AND Kk-DIFFERENCE GRAPHS
The eigenvalues of k-sum and k-difference graphs can be determined as
follows. Let 6 denote an nth root of unity in the complex field C. The
following can be easily verified by straightforward matrix manipulation.
Lemma 1. The difference graph on n vertices determined by a set S = {a, ,a,,
., a.} has eigenvalues Z 6% where 0 ranges over all nth roots of 1.
Proof. The eigenvectors are (1,6,6%, ... ,6"_1).

We remark that the eigenvectors of the difference graph form an orthogonal
basis so that Theorem 3 can be applied.
Lemma 2. The sum graph on n vertices determined by a set S = {a,,a,,....a,}
has eigenvalue: k + IZf,‘:l 6“| where @ ranges over all nth roots of 1 with
0 # 1 and Y (-1)" if n is even.
Proof. The eigenvectors are (1,0,0%,...,6"") % (Ek 0“)/| Zf.(zl 6|
OO LN R T R

It remains to be shown that |} " 0d| is small for 6 # 1 where the d,’s
are as specified in the preceding section.

Theorem 4. Z 6° 1<(t-1)/p.

Theorem 4 is an immediate consequence of the following theorem of N. M.
Katz [25].

Theorem 5. Ler Y denote a nontrivial complex-valued multiplicative character
defined on an extension field E over a finite field K with dimension t. Then
forany x € E such that E = K(x) we have

Y ¥(x+a)| < (- 1DVIK].
acekK

A more general form of Theorem $ on character sums for a finite étale algebra
is proved in [25]. In the sum graphs we have A < (¢t — 1),/p. Therefore by
Theorem | we get the following.

Theorem 6. Sum graphs on n = p' — 1 vertices have degree p and diameter at
most 2t + 4tlogt/(logp —2log(t — 1)) if /P>t -1.

As an immediate consequence of Theorem 6, the sum graph is connected if
VP > t—1. This implies that the multiplicative group GF (p')" is generated by
{w,w+1; ..., w+p—1} foraroot w of an irreducible ¢th degree polynomial
F(x) in Z [x].

Another consequence of Theorem 6 is the following result.
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Theorem 7. For a prime p, an element in GF(p') ~ GF(p)[x]/(F(x)) can be

written as
(x+ap) - (x+ap,,)

(x+b,)-~~(x+btm/2j)
where a; and b, are in GF(p) and
m < 2t +4tlogt/(logp — 2log(t — 1))
provided /p>1t—1.
We remark that the estimates for the diameter of the sum graph in Theorems
6 and 7 are quite close to best possible if p # 2. In fact, the sum graph has
diameter at least 21— 1, if p # 2. Suppose we choose a in GF(p)—{1} # O,

for p # 2, and try to go from 1 to a in the sum graph. If there is a path
joining 1 and a of length 2r, then

a=]0c+e)/[Ix+8)
=1 i=1

where o, and B, are in GF(p).
If there is a path joining 1 to a of length 2r — 1, we then have

r r—1
a=[[e+a)/T]tx+8)
i=1 =1

for a; and B, in GF(p). Now if r <1, cross-multiplying gives an identity
in GF[x] of degree r that is impossible. So the upper bound 27 + 1 for p
sufficiently large is quite sharp.

Similarly, by considering the diameter of the difference graphs, we have the
following.

Theorem 8. For a prime number p, any element
o € GF(p') = GF (p)[x]/(F (x))

can be written as o = (x +a,)---(x + a,,) for some a, € GF(p) if m >
2t +4tlogt/(logp —2log(t — 1)) and /p>t—1.

An interesting problem is to find the exact number r such that any element
can be written as a product of no more than r linear terms. It is easy to see that
at least 7+ tlogt?/log p terms are required since the total number of elements
that can be written as a product of m linear terms is at most ("*ﬂ“) >p'—1.
From Theorem 6 we know that such ¢ is between 2r+4¢log¢/(log p—2log(t—1))
and ¢ +tlogt/log p. A recent result of Katz [26] gives an upper bound of 7+ 2
provided p is large enough. Therefore the difference graph has diameter of at
most ¢+ 2.

5. CONCLUDING REMARKS

One immediate application of difference graphs is the problem of multi-loop
networks. Multi-loop networks, which arise in connection with the design of
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local computer networks, can be described by a directed graph as follows. The
vertices of the graphs are 0, 1,...,n—1 (mod n) and directed edges from i
to i+a ; for some fixed set of a ; ’s. The problem of interest is to minimize
the diameter of such graphs. For the case of |S| = 2, so-called double loop
networks, several papers [13, 34] obtained close bounds for the diameter, and
recently Cheng [13] obtained the complete solution. By using difference graphs,
we can construct multi-loop networks of size n = p’ — 1 by taking S to be
d;’s as mentioned in §3. Such graphs will have diameter of at most ¢ + 2 and
at least ¢+ tlogt/log p if p is sufficiently large.

One of the outstanding open problems in extremal graph theory is to find
a graph on n vertices with maximum number f(n,2¢) of edges that does
not contain a cycle on 2t vertices. It is known [9, 18] that en' M o
f(n,2t) < c'n"™" | For small values of ¢, t =2,3,5, finite geometries were
used to construct extremal graphs with cn'""/’ edges [8, 11, 17, 37]. The sum
graphs as described in §3 have en' ! edges with the property that for almost
all pairs of vertices there are at most a bounded number of paths of length ¢.
This provides some evidence in support of the conjecture of P. Erdos (see [17])
that f(n,2t) behaves as cn't"/' for n sufficiently large.

Although substantial progress has been made for constructions of relatively
sparse random-like graphs, the constructions for dense graphs remain very poor.
The following problem in Ramsey theory is still unresolved.

Construct a graph on » vertices with the property that the largest complete
subgraphs have at most clogn vertices and the largest independent sets have
at most clogn vertices.

The best construction [19] known so far guarantees only complete subgraphs

and independence sets of size smaller than ec‘/@. This remains one of the
major open problems in combinatorics.

Another interesting problem is to find the actual “realization” of the linear
products. Namely, for a prime p and integer m, we would like to find an
efficient method which can generate, for a given element « in GF( pt) , a rep-
resentation of « as the linear product of no more than m terms.

ACKNOWLEDGMENT

The author wishes to thank Barry Mazur and Andrew Odlyzko for very help-
ful discussions. Many thanks are due to H. Wilf for simplifying the proofs of
Theorems 1 and 2.

REFERENCES

1. M. Ajtai, J. Komlés, and E. Szemerédi, Sorting in clogn parallel steps, Combinatorica 3
(1983), 1-19.

2. N. Alon and V. D. Milman, A, , isoperimetric inequalities for graphs and superconcentrators,
J. Combin. Theory Ser. B 38 (1985), 73-88.

3. N. Alon, Eigenvalues and expanders, Combinatorica 6 (1983), 8§3-96.



10.

11.

12.
13.
14.

15.
16.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

DIAMETERS AND EIGENVALUES 195

. N. Alon, Z. Galil, and V. D. Milman, Better expanders and superconcentrators, J. Algorithms
8 (1987), 337-347.

. W. N. Anderson, Jr. and T. D. Morley, Eigenvalues of the Laplacian of a graph, Univ. Maryland
Technical Report TR-71-45, 1971.

. L. A. Bassalygo, Asymptotically optimal switching circuits, Problems Inform. Transmission 17
(1981), 206-211.

. J. Beck, On size Ramsey number of paths, trees and circuits. 1, J. Graph Theory 7 (1983),
115-129.

. C. T. Benson, Minimal regular graphs of girths eight and twelve, Canad. J. Math. 8 (1966),
1091-1094.

. 1. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combin. Theory Ser. B 16
(1974), 97-105.

R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv.
37 (1962), 141-147.

W. G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull. 9 (1966),
281-285.

M. W. Buck, Expanders and diffusers, SIAM J. Algebraic Discrete Methods 7 (1986), 282-304.
Ying Cheng, Diameters of double loop local computer networks, 1988, preprint.

F. R. K. Chung, On concentrators, superconcentrators, generalizers and nonblocking networks,
Bell Systems Tech. J. 58 (1978), 1765-1777.

P. Diaconis, Group representation in probability and statistics, 1988, preprint.

M. Eichler, Quaternary quadratic forms and the Riemann hypothesis for congruence zeta func-
tions, Arch. Math. 5 (1954), 355-366.

. P. Erdés, A. Rényi, and V. T. Sés, On a problem of graph theory, Studia Sci. Math. Hungar.
1 (1966), 215-235.

R. J. Faudree and M. Simonovits, On a class of degenerate extremal graph problem, Combi-
natorica 3 (1983), 97-107.

P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica
1 (1981), 357-368.

J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7
(1987), 71-76.

Q. Gabber and Z. Galil, Explicit construction of linear sized superconcentrators, J. Comput.
System Sci. 22 (1981), 407-420.

Y. lhara, Discrete subgroups of PL(2,kp), Proc. Sympos. Pure Math., Vol. 9, Amer. Math.
Soc., Providence, R. L., 1968, pp. 272-278.

J. JaJa, Time space tradeoffs for some algebraic problems, Proc. 12th Annual ACM Sympos.
on Theory of Computing, 1980, AMC, NY, 1980, pp. 339-350.

S. Jimbo and A. Maruoka, Expanders obtained from affine transformations (extended abstract),
1984, preprint.

N. M. Katz, An estimate for character sums, J. Amer. Math. Soc. 2 (1989), 197-200.

—_, Factoring polynomials in finite fields: an application of Lang-Weil to a problem in graph
theory, 1988, preprint.

T. Lengauer and R. E. Tarjan, Asymptotically tight bounds on time space tradeoffs in a pebble
game, J. Assoc. Comput. Mach. 29 (1982), 1087-1130.

A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261-
278.

G. A. Margulis, Explicit constructions of concentrators, Problemy Peredati Informacii 9 (1973),
71-80 (English transl. in Problems Inform. Transmission 9 (1975), 325-332).

M. Pinsker, On the complexity of a concentrator, Tth Internat. Teletraffic Conf., Stockholm,
June 1973, 318/1-318/4.



196

31
32.

33.

34.

3s.

36.

37.

38.

39.

40.

F. R. K. CHUNG

N. Pippenger, Superconcentrators, SIAM J. Comput. 6 (1977), 298-304.

—, Advances in pebbling, Internat. Collog. on Automation Languages and Programming,
Vol. 9, 1982, pp. 407-417.

W_J. Paul, R. E. Tarjan, and J. R. Celoni, Space bounds for a game on graphs, Math. Soc.
Theory 10 (1977), 239-251.

C. S. Raghavendra and J. A. Silvester, 4 survey of multi-connected loop topologies for local
computer networks, Computer Networks and ISDN Systems 2 (1986), 29-42.

S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (9) (1916),
159-184.

W. M. Schmidt, Equations over finite fields. An elementary approach, Lecture Notes in Math.,
Vol. 536, Springer-Verlag, Berlin and New York, 1976.

R. R. Singleton, On minimal graphs of maximum even girth, J. Combin. Theory 1 (1966),
306-332.

R. M. Tanner, Explicit construction of concentrators from generalized N-gons, SIAM J. Alge-
braic Discrete Methods 5 (1984), 287-294.

M. Tompa, Time space tradeons for computing using connectivity properties of the circuits, J.
Comput. System Sci. 20 (1980), 118-132.

L. G. Valiant, Graph theoretic properties in computational complexity, J. Comput. System Sci.
13 (1976), 278-285.

ABSTRACT. We derive a new upper bound for the diameter of a k-regular graph
G as a function of the eigenvalues of the adjacency matrix. Namely, suppose
the adjacency matrix of G has eigenvalues 1,, 4,,..., An with [A] > |4;] >
++ > |An| where 1) =k, 4 =[4;|. Then the diameter D(G) must satisfy

D(G) < [log(n — 1)/ log(k/4)].

We will consider families of graphs whose eigenvalues can be explicitly de-
termined. These graphs are determined by sums or differences of vertex labels.
Namely, the pair {/, j} being an edge depends only on the value i+ (or i—j
for directed graphs). We will show that these graphs are expander graphs with
small diameters by using an inequality on character sums, which was recently
proved by N. M. Katz.
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