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1. Introduction

Two subsets U and V of vertices in a graph G are said to be separated if
no vertex in U is adjacent to any vertex in V. A subset § of vertices in a
graph G is said to be a separator of G if by removing vertices in § from G,
the remaining graph can be partitioned into two separated parts, say A and B,
satisfying |4i < |B| < 2|A|. The concept of separators has been an extremely
useful tool for dealing with many families of graphs (such as trees, planar
graphs}). For graphs with small separators, efficient and systematic methods can
be developed for solving extremal and computational problems in so-called
“divide-and-conquer™ fashion. Namely, the original problem is divided into two
or more smaller problems. The subproblems are solved by applying the method
recursively, and the solutions to the subproblems are combined to give the
solution to the original problem.

There are many different formulations and variations of separator theorems
scattered about in the literature. For example, some very useful separator proper-
ties involve the trade-off of the separator size and the ratio of the two separated
parts as well as additional requirements when the vertices are colored. We here
intend to briefly survey various separator theorems. Then we will discuss some
applications of these separator theorems to an extremal graph problem of finding
optimal universal graphs. We then include references to many other applica-
tions in algorithmic design, data structure, and circuit complexity as well as in a
number of other areas.

2. Separator Theorems for Trees

For a subset S of vertices in a graph G, we say S separates a subgraph H in G if
there is no edge between vertices in H and vertices V(G) — § — V(H).
We will start from the easiest but most fundamental separator theorems (see
[CG1]).
1

Theorem 2.1. Suppose « is any real number more than 5 and T is a tree with at

least a+1 vertices. Then some vertex v separates a forest F in T satisfying

a < V() < 2e.
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Proof. If & < 1, we choose F to be an end vertex in T which can be separated by
removing one vertex. We assume a > L. If |V (T)| < a+ 1, the result is immediate.
We may assume |V(T)| > a« + 1. Choose a leaf vy in T and let {v,v,} denote
the edge incident to vy. If ail the connected components of T — v; have no more
than a vertices, then by taking unions of some connected compenents, the desired
forest F can be formed. Thus we may assume that some connected component T,
has more than « vertices. If T, has fewer than 2« vertices, then we take F = T3.
We may assume |V(T))] = 2o Let v be the vertex in T, adjacent to v, and
consider the set S; of connected components in T — v2 not containing v;. The
total number of vertices in S; is at least 2 — 1 > a. As before, if all trees in S;
have no more than a vertices, then F can be formed similarly. If some tree in §,
has at least « but fewer than 2a vertices, again we are done. If some tree T; in
51 has more than 2a vertices, then we let v; denote the vertex in T; adjacent to
1, and we consider the connected components of T — 13 not containing v, etc.
By continuing in this matter, the theorem follows by induction. O

As an immediate consequence of Theorem 2.1, we have the following (also
see [CG1, LSH]).

Corollary 2.1. Any n-vertex tree can be divided into two separated parts, each with
no more than %n vertices, by removing one vertex.

Remark 2.1. If we replace “tree™ by “forest”, Theorem 2.1 and Corollary 2.1 are
obviously true.

Remark 2.2. If we limit ourselves to binary trees, then we can achieve the same
separation by removing one edge as follows:

Corollary 2.2. For any real number a > 1, let T be a binary tree with at least a+1
vertices. Then some edge separates a forest F in T satisfying

a < |V(F)| < 2.

For trees with maximum degree d+1, the ratio of the two separated parts can
be as large as d [Va2]. In a very similar way, the following can be proved.

Corollary 2.3. For any real number a > 3, let T be a tree, with maximum degree
d+1 having at least a+1 vertices. Then some edge separates a forest F satisfying

o < |V(F) < da.

If we allow removing more than one vertex from a tree, the ratio of the two
separated parts can be closer to % In [CGP], it was shown that by removing w
vertices, the ratio of two separated parts is no more than 1 + (%}w‘l. We here

give an improved version.
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Theorem 2.2. Let w denote a positive integer and T denote a tree with at least
B + w vertices where B is a real value more than 3’2— Then some set of w vertices
separates a forest F in T satisfying

wvei-s(3) 6

Proof. For w=1, this is an immediate conscqucnce of Theorem 2.1 by choosing «
to be 3 28. Suppose it holds for any w', where 1 < w' < w. By induction we can
choose a set W' of w-1 vertices so that there is a forest Fy, formed by taking the
union of some connected components in T — W' satisfying

w1
vai-ns<(3) s

If(VEF) -8l < (%)“ B, then Theorem 2.2 holds for w. We may assume

(=) pmen<(-())r
(1+(3))p<wens (1+(3) 7 )n

We consider the following two cases.

())<= ()

Let Fa be the forest formed by taking the union of all the connected compo-
nents in T — W Fi. Let g = 2(ﬁ |V (F1)]) and apply induction assumption
for F; if By > 2. There is a vertex v so that a forest F; can be formed by taking
the union of some connected components in F, — v satisfying

Bi < |V(F3)| < 2B1.

Let F4 denote the forest in T — W' — v which is the union of F| and F;. Then
we have

or

Case 1.

VD = V() + 1V ()
2 [V(F)|+ B
> [V(F)I+ 26— IV (F))

_ém_( l(%)w_l)ﬁ
=(1-(5) )e
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On the other hand,

|V{(Fa)| S {V(FDI + |V (F3)l
< |[VIF)I+ 28

SV + 56~ IVR))

4 1

< 3.3 - EIV(FI)]

4 1 IR
533’5(1—(5) )ﬁ
S(H—(%)w)ﬁ.

Suppose f; < 3. Then 8 — V(G)) < %. We choose a vertex v so that there is an
isolated vertex ¢ in T — W' — F; —v'. Let F; be the forest in T — W' — ¢ which
is the union of F; and ¢". We have

VEN = VFN+128+ ;28 and

WD = [VF) 4+t < (1 - (%) ) B4

<(1+(3) )

We can then take F to be F4 or Fj.

(1 (3))pmmms (1+(3) )

Let 2 = 2(V(F))l — 3 — B) and apply the induction assumption for Fy if
B2 > ‘5 There is a vertex u so that a forest Fs can be formed by taking a union
of some connected components in Fy — u satisfying

Case 2.

B < |V{Fs)| < 2.

Let Fg denote the forest F| — Fs — u which is the union of some connected
components in T — W’ — u. We then have
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[V (Fe)l = |V(F\)| — |V (Fs)| — 1
> |V(F)|—282—1

2 V) = 3V~ 3~ 1

4 1
> 38— 3IV(F)

On the other hand, we have
[V (Fe)| = |[V(Fi — [V (Fs)| — 1

<IVE) = FOVE) 3~ f) 1

1 1
< IVFDI+ B— 3

(1 + (3)H) B+ 38
<s+(3) 8

Suppose 2 < % Then [V (Fy)| — % —-f=< %. We can choose a vertex ' so that
there is an isolated vertex «” in F| — . Let F; denote the forest F; —u' — u”
which is the union of some connected components in T — w' — «'. We have

v =vE-1sp+g< (14(3) )8

(%]

Lul»—

. "
V{Fe)l = |[V(F}| -t = (1 + (5) )ﬁ —1
1 w
>{1-1= .
=(-() )
Fg or Fy is the forest F we want. This completes the proof for Theorem 2.2.

Corollary 2.4. Any n-vertex tree can be divided into two separated parts, each with
w - . - .
no more than (1 + (%) ) 3 vertices, by removing w vertices, if n > 3%,

Theorem 2.3. Any n-vertex tree can be divided into two separated equal parts by
removing at most Llog 31 + 1 vertices.

Proof. Using Theorem 2.2 and setting w = |logs{n —logyn)|, § = i%&’—"l, it is
easily checked that g - (%)"" < % Therefore by removing w+1 vertices, the tree is
divided into two separated equal parts. o
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A separator is called a bisector if it separates the graph into two equal parts.
In [BCG], examples have shown that the bisectors in Theorem 2.3 are very close
to the optimum.
|

Theorem 2.4. In the complete ternary tree on 2t levels with n = 5 vertices, one

cannot remove fewer than :%g% - %ﬁg"—n vertices to separate the remaining graph
into two equal parts.

Remark 2.3, Theorems 2.1 and 2.2 can all be generalized by considering a cost
assignment to vertices instead of counting vertices. Here we state the generalized
versions whose proofs are extremely similar and will not be given.

Theorem 2.1'. Let F be any n-vertex forest with non-negative vertex costs. Let «
be any real number that is greater than half of the maximum cost of the vertices
and is smaller than the sum of the total vertex costs subtracting the minimum vertex
cost. Then some vertex v separates a forest F' so that the total cost of vertices in
F' is between a and 2o

Theorem 2.2". Let w denote a positive integer and F denote a forest with non-
negative vertex costs. Let B be a real value that is at least 37” times the maximum
vertex cost and is smaller than the sum of the all vertex costs except for the w
smallest vertex costs. Then some set of w vertices separates a subforest F' and the

total cost ¢(F') of vertices in F' satisfies

e -pi<(3) 8

3. Separators for Colored Trees

Suppose the vertices of a tree are colored in k colors for some given integer k.
It is often desirable to remove a small number of vertices so that the remaining
graph is separated into two parts, each having about a half of the number of
vertices in each color. This has the similar flavor of a very nice result of Goldberg
and West [GW].

Theorem 3.1. Suppose the beads on a string are colored in k colors. One can cut
the necklace at k places so that the resulting strings of beads can be placed into
two piles, each of which contains the equal (to within one) number of beads in each
color.

This necklace-splitting theorem can be combined with a decomposition lemma
to derive the tree-splitting analogue (see [BL]). Since the subgraphs of a tree
inherently have small separators, we can associate the separators in a complete
binary tree structure. A complete binary tree of ¢ levels has a vertex set consisting
of all (0,1)-tuples of length <  together with the root denoted by °. Each vertex
u is adjacent to its two children 0 and ul.
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Lemma 3.1. Any n-vertex tree can be mapped into a complete binary tree C of
[kl,‘; 3'/'2] levels satisfying the following properties.

(i) The mapping f is I-1 from V(G) into V(C).
(ii) For each w in C, let 5, denote the set of all vertices in T that are mapped
to descendants of w in C. Then |Sw0| < |Se1] < 2|Swol.
(iii) For each w in C, let A, denote the set of all vertices in T that are mapped
to the ancestors of w in C and w itself. Then by removing A, the set S, is
separated from the rest of the graph in T — A,,.

Proof. This follows immediately by mapping the separator vertex of Theorem 2.1
to the root and the two separated parts to Sp and Sy, recursively.

This decomposition tree induces a natural linear order for vertices in T which
can be viewed as the order from left to right in the plane layout of C. To be
precise, for two distinct binary tuples o and f# of length < 1, we say « < f
if at the first place they differ, the corresponding coordinate of o is 0 and the
corresponding place for f is 1.

Lemma 3.2. Each initial segment, which consists of all u with f(u} < w for some w
in C, can be separated from the rest of the tree by removing vertices that mapped
to the path A(w) consisting of all ancestors of w.

Combining Theorem 3.1 and Lemmas 3.1 and 3.2, we can then arrive at the
foltowing result for splitting colored trees (see [BL]).

Theorem 3.2. Suppose the n vertices of a tree are colored in k colors. By removing
cklogn vertices, the connected components can be partitioned into two parts, each
containing the same number of vertices in each color,

Proof. First we use Lemma 3.1 to decompose the tree T. That is to map the
vertices of T into a complete binary tree C of [bﬂ%] levels. Using the linear
order introduced by the decomposition tree, the colored vertices can be viewed as
a string of beads, so we are ready to use the necklace-splitting theorem. Theorem
3.1 ensures that by making no more than k cuts in the string, the k-colored
beads can be almost equally partitioned into two parts. Now, for each cut, choose
a vertex w next to the cut and let Sy consist of all vertices in the path A(w)
consisting of all ancestors of w. It follows from Lemma 3.2 that by removing all
vertices in Sy, the remaining graph in T can be partitioned into two parts so
that the sum of differences of the number of vertices in each color is no more
than |Sy| + k. By adding additional |So| 4+ k vertices to Sy to form the separator §,
the number of vertices of each color in the two parts can then be balanced. The
separator § contains no more than 2k([£§%1 + 1) vertices. This completes the
proof of Theorem 3.2.

Although Theorem 3.2 is best possible within a constant factor, there is a
trade-off between the size of the separator and the precision of bipartition. This
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is often crucial in proving optimality of various universal graphs in later sections
[BCLR1, BCLR2].

Theorem 3.3. For each constant p < % there exists a constant q such that any
n-vertex forest with w vertices of color A can be partitioned into two sets by the
removal of q vertices so that each set has at least \pn)| vertices and at least |pw)
vertices of color A.

The proof of Theorem 3.3 mainly follows from forming an appropriate
decomposition tree and will not be included here. There is a generalized version
that will be stated here without proof.

Theorem 3.4. For each constant p < % and each positive integer k, there exists a
constant g such that any n-vertex forest with n; vertices of color ¢;, i =1,...,k, can
be partitioned into two sets by the removal of g vertices so that for each i, each set
has at least |p(my +... + n)]| vertices in color 1,2,...1.

4. Separator Theorems for Planar Graphs

Separator theorems for planar graphs and their applications were first described
in the seminal papers of Lipton and Tarjan [LT1, LT2]. Here we will state without
proof several major versions.

Theorem 4.1 [LT1]. Let G be any n-vertex planar graph with non-negative vertex
costs. Then the vertices of G can be partitioned into three sets A, B, C, such that
no edge joins a vertex in A with a vertex in B, neither A nor B has vertex cost
exceeding % of the total cost, and C contains no more than 2+/2,/n vertices.

Remark 4.1, The constant 2v/2 was improved by Djidjev [D1] to v/6 and later
by Gazit [G] to 1.

Theorem 4.2 [LT1]. Let G be any n-vertex planar graph with non-negative vertex
costs. Then vertices of G can be partitioned into three sets A, B, C, such that
no edge joins a vertex in A with a vertex in B, neither A nor B has vertex cost
exceeding % of the total cost, and C contains no more than 2/2/(1 — /2/3)}/n
vertices.

Remark 4.2. The constant 2+/2/(1~1/2/3) = 15.413 was later improved in several
papers; v6/(1 — 1/2/3) =~ 13.348 in [D1] and 8 + 35v/6/(1 — 1/2/3) = 10.637 in
[Ve]. The current best constant is 1% 3 = 9.845 (see [C1]). On the other hand,
the best known constant for the lower bound is % = 1.155 by considering a plane
graph with vertex set consisting of points {{x, yM) :x,y € z and (x, yﬂ)

is in a regular hexagon of side /n/3} and the edges are between points of
distance at most 1.

Remark 4.3, The separator can be constructed in O(n) time [LT1].
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The constant can be further improved if we consider the separation of a
planar graph into two parts, each with roughly equal number of vertices. In other
words, every vertex has a cost of 1.

Theorem 4.3 [Cl]. Let G be any n-vertex planar graph. The vertices of G can be
partitioned into three sets A, B, C, such that no edge connects A with B, A and B
each have < } vertices, and C contains < 3v/6./n vertices.

The constant 3v/6 ~ 7.348 is an improvement over the results in [LT1], [D1]
and [Ve].

We will give the proof for Theorem 4.3 which needs the following facts.

Lemma 4.1 [LT1]. Let G be a planar graph of radius s, with non-negative vertex-
costs summing to 1. Then the vertices of G can be partitioned into three parts
A, B, C, such that there is no edge between A and B, neither A nor B has total
vertex cost exceeding % and C contains at most 2s + 1 vertices.

Lemma 4.2 [D1]. Let G be an n-vertex planar graph of radius s. For any real
number r, % < r < 1, there exists a set § = V(G) with at most 3s + 1 vertices
such that by removing vertices in S from G the remaining graph is separated into
three parts A, B, C, such that A, B each contain at most (1 — r)n vertices, and C
contains at most rn vertices.

Lemma 4.3 [Ve]. For any integer s, an n-vertex planar graph G contains a subgraph
H of at least n—" vertices so that any subgraph of H can be embedded into another
planar graph of radius s — 1.

Proof of Theorem 4.3. Let G denote a planar graph on n vertices. We will
determine 4, B and C iteratively as follows:

Step 0. Sets= [\/gj and use Lemma 4.3 to find a set Sy with at most 2 vertices
and embed G — 5; into a graph G’ of radius s— 1. Set A=B =@, C = §; and
j=1

In general, for i = 1,2,.. ., the step i can be described as follows.

Step i. Setr = (] —|A|)/n" where n = |V(G")|. For j < 2, use Lemma 2 to find
a separator S’ containing at most 3(s — 1) vertices which separate G’ into A’, B’
and C’ with |4'| < |[B{ < (1 —r)n’ and |B'| < |C'| < rn'. Set A to be the smaller
one of AUC" and BU B'; B to be the larger one of AUC' and BUB’; and €
tobe CUS'. If j < 2, apply Lemma 3 to the induced subgraph of A" and form
a new graph G’ of radius s — 1, set j = j+ 1 and repeat Step i. If j = 2, set i to
be i+ 1, j to be 1. Then set s to be 1/n'/6 when applying Lemma 3 to 4’ and
form G’ of radius s — 1, add "; vertices to C. Then go to the next step until G’ is
empty.

The correctness of this algorithm can be established by verifying the following
facts in Step i Suppose at the beginning of Step i A has p vertices, B has
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q vertices and G’ has w vertices. The new A and B have no more than the
maximum of p+ |C’| and g+ |B’|. Since p+|C | <p+rw<p+{(3—pI <3 % and
g+|B|<g+(l—rw< q+w—-+p < %, the new A and B has no more than 5
vertices. Furthermore |A| < % since |A| < |B| < |C'| and |A'| + |B'|+|C'| < w.
This implies the new G’ has at most % vertices. Because of our choice of j, for
each i, Step i is repeated twice for j = 1 and 2 (except for possibly the last step).
So altogether |G| is reduced by a factor of 9.
We can bound the separator C = C(n) as follows:

C(n)<2ff+z2f[

izl

52\/6\/ﬁ+|C(g)|.

Therefore

IC(n)| < 3V6y/n.

This completes the proof for Theorem 4.3.
Miller {M] further requires the planar separator to be a simple cycle.

Theorem 4.4 [M). If G is an embedded 2-connected planar graph with non- negatwe
weights assigned to vertices and faces that sum to 1, and no face has weight > 3,
then there exists a simple cycle on at most 2+/2n vertices so that neither the interior
nor the exterior has total weight > %

For graphs with genus g, the separator is of size ¢,/gn [D2, GHT]. The best
constant is given in [D3].

Theorem 4.5. Any n-vertex graph of orientable genus g has a separator with

V2g + 1v6n vertices.

5. Separator Theorems and Universal Graphs

Separator thcorems have many applications in a broad range of areas. In this
section, we will illustrate some applications in extremal graph theory, namely in
the construction of universal graphs.

The problem of universal graphs is a fundamental problem that arises in
various contexts in many topics such as universal circuit [Va2], data representation
[CRS, RSS], VLSI design [CR, BCG] and simulations of parallel computer
architecture [BCLR1, BCHLR]. A typical problem is the following:

How many edges must a graph have that contains all trees with n vertices?

Obviously, the complete graph on n vertices and (3) edges has the required
universal property. However, the objective is to determine the minimum number
f(n) of edges in such a universal graph G(n), which contains all n-vertex trees.
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It is easy to see that the universal graph G{(n) must contain at least nlogn
edges since it must contain one vertex of degree > n — 1, two vertices of degree
2 5, and, in general, i vertices of degree > 7 so that its degree sequence dominates

—1,3,3.... . On the upper bound for f(n), we can improve upon (2) of the

complete graph by the following series of appllcatlons of the separator theorem
for trees.

Construction 1. Gi(n) is the union of G, (2n) and G, (3) together with a vertex u
that is adjacent to all other vertices. By using Theorem 2.1, any n-vertex tree can

JEARE)

Fig. 1

be embedded into G, (n) by mapping the separator to # and the separated parts
to Gy {3n) and G, (%) respectively. On the other hand, the number of edges in
G{n) is bounded above by f;{n), which satisfies the following inequality’:

fi0> £1 (3n) +10(3) +n

It is easy to verify that

|E(Gl("))| < f‘ (n) < Cn1‘3

Although this is significantly better than the complete graph, it can be much
improved by using Theorem 2.3.

Construction 2. G;(n) is the union of two copies of G, (2) together with 122
vertices, each of which is adjacent to all other vertices. A straightforward appli-
cation of Theorem 2.3 shows that G,(n) contains all trees on n vertices and the
number of edges in G2(n) is bounded by f»(n) which satisfies

fan) = 26> () +nlogsm.

! Strictly speaking, we should use Gi(| 2n]) and G;(|}}). However, we will usually not
bother with this type of detail since it has no significant effect on the arguments or
results.
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It can be easily checked that
|E(G2(n))| < f2(n) < cnlog®n.

The above bound can be further improved by using Theorem 2.2 appropriately

74

Fig.2

Construction 3. Gi{n) consists of Gi(m) and G3(m) together with w vertices that

are adjacent to all other vertices. By choosing w = 11303;—3"%2—" and

m=w-n

we can then derive
|E(G3(n))| < nlogn(loglogn)®.

In fact, it has been shown [CG3] that the minimum number f(n) of edges in
a graph that contains all n-vertex trees satisfies

%nlogn < f(n) <

’ 1
Tog 4Hlogn.

The construction assumption and proof are based on an elaborated induction
and repeated usage of Theorem 2.1 that we will not discuss here. Our relatively
simple descriptions of construction 1-3 merely illustrate various ways of using
separator theorems and their effects.

A related problem is to determine the minimum number f(n,d) of vertices in a
graph that contains all n-vertex trees with maximum degree d. This problem can
be solved by using the separator theorems for colored trees (Theorems 3.2, 3.3)
and the decomposition lemmas. We here consider a simpler version of universal
graphs for binary trees, that are trees with maximum degree 3 (see [BCLR2]).

Lemma 5.1. The n vertices of a binary tree T can be mapped into a complete binary
tree C on no more than 24 —1 vertices (24— 1 < n < 29*' —1) s0 that 6log 5 + 18
vertices of T are mapped into a vertex of C at distance t from the root, and so that
any two vertices adjacent in T are mapped to vertices at most 3 apart in C.
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o

/

Gg(n)

Fig.3

Proof. The idea is to recursively bisect T, placing the successive sets of bisector
vertices within successively lower levels of C, until T is decomposed into singie
vertices. For example, the vertices placed at the root of C bisect T into two
subgraphs 7| and T,. Similarly, vertices mapped to the left child of the root
bisect T7 and vertices mapped into the right child bisect 7. In addition, at level
i of C we map vertices of T (that have not already been mapped within levels
i—1, i —2) that are adjacent to vertices mapped at level i — 3 of C. This ensures
that vertices adjacent in T will be mapped to vertices of C at most distance 3
apart.

To keep the number of vertices of T mapped to a level i vertex in € within
the required bounds, we use separators for 3 colors, so-called 3-bisectors, as in
Theorem 3.2. The following procedure describes how this is done.

Step 0. Initialize every vertex of T to color A, bisect T, and place the bisector
vertices at the root (level 0) of C.

Step 1. For cach subgraph created in the previous step, recolor every vertex
adjacent to the bisector in the previous step with color 0, and place a 2-color
bisector for the subgraph at the corresponding level 1 vertex of C.

Step 2. TFor each subgraph created in the previous step, recolor every vertex of
color A adjacent to the bisector in the previous step with color 1, and place a
3-color bisector for the subgraph at the corresponding level 2 vertex of C.

Stept. (log|T| =t = 3). For each subgraph created in the previous step, place
every vertex of color t—1 (mod 2} at the corresponding level ¢ of C, recolor every
vertex of color A that is adjacent to one of color t — 1 {mod 2) with color t {(mod
2), and place a 3-color bisector for the remaining subgraph at the corresponding
level t vertex of C.

To ensure the accuracy of Step ¢, it suffices to show n, < 6log 5 + 18 for
3 <t <log|T|. Since we have
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n 1
n; < 3log 7 + Ent_3

n
< 6log > + 18,
Lemma 5.1 is proved.

The analogous version for bounded-degree trees and planar graphs can be
proved in a very similar way and the proofs are left to the reader. The main
difference in proving these results is that vertices adjacent to previously mapped
vertices are themselves only mapped at every iogd instead of at every level.

Lemma 5.2. The vertices of a tree T with maximum degree d can be mapped into
a complete binary tree C on no more than 29 — 1 vertices (29 — 1 < n < 29! _ 1)
so that o(log 5) vertices of T are mapped to a vertex of C at distance t from the
root, and so that any two vertices adjacent in T are mapped to vertices at most
distance Oflogd) apart in C.

Lemma 5.3. The vertices of a planar graph G of maximum degree d can be mapped
into a complete binary tree C on 29 — 1 vertices (29 — 1 < n < 29! — 1) so that
O(+/n/2%) vertices of G are mapped to a vertex of C at distance t from the root,
and so that any two vertices adjacent in G are mapped to vertices at most distance
O(logd) apart in C.

A graph G is said to have a k-bisector function f if any subgraph of G on m
vertices has a k-bisector of size no more than f(m). The preceding lemmas are ali
special cases of the following.

Lemma 5.4. Suppose G on n vertices with maximum degree d has a k-bisector
Sfunction f. The vertices of G can be mapped into a complete binary tree C on no
more than 2% — 1 vertices where 29 — t < n < 29%! 1 50 that adf (5) vertices of
G are mapped to a vertex of C at distance t from the root, and so that any two
vertices adfacent in G are mapped to vertices at most distance k apart in C if

2f (xd ™) < d¥**f(x) for all x.

Although Lemma 5.4 looks somewhat complicated, it is merely a straightfor-
ward generalization of Lemmas 5.1 = 5.3, and we omit the proof. We can now
construct universal graphs using the decomposition lemmas.

Theorem 5.1. The minimum universal graph for the family of all bounded-degree
trees on n vertices has n vertices and O(n) edges.

Proof. Using Lemma 5.2, we consider the graph with vertices grouped into
clusters corresponding to the vertices in the complete binary tree C. A cluster
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corresponding to a vertex of level ¢ contains O(log ;) vertices. We connect all pairs
of vertices in clusters with corresponding vertices within distance O(logd) = O(1)
apart in C. By Lemma 5.2 the resulting graph is universal for the family of all
trees with maximum degree d. The number h(n) of edges in this graph is O(n),
since h(n) satisfies the foliowing recurrence inequality:

hin) < 2h (g) + c(logn)?

where ¢ is an appropriate constant depending on d.

The construction just described has O(n) vertices. To obtain a universal graph
with precisely n vertices, we modify the embedding of Lemma 5.1 so that the
same number of vertices of T are wrapped to vertices in the same level of C.
This is easy to do since we can always arbitrarily expand the bisector of any
subtree to be within one of its maximum allowed value (which is the lesser of
the number of vertices remaining and O(log 3) for vertices on level ¢ of C). The
exact value of the maximum bisector is the same for all vertices on a level and
depends on the parity of the number of vertices in the subgraphs at that level.
Hence, the size of the bisectors at each level depends only on s, and the universal
graph can be assumed to have precisely n vertices.

Theorem 5.2, The minimum universal graph for the family of all bounded-degree
planar graphs on n vertices has n vertices and O(nlogn) edges.

Proof. The construction is by using Lemma 5.3 in similar fashion as in the proof
of Theorem 5.1. The number of edges h(n) satisfies

hw) <20 (3 ) +en
and therefore the minimum universal graph has O{n log n) edges. m]
Theorem 5.3. The minimum universal graph for a family of bounded-degree graphs
on n vertices with bisector function f(x} = n™ has n vertices with: O(n) edges if

o < % O(nlogn) edges if o = % O(n™) edges if x > %

Proof. The construction follows from Lemma 5.4 together with the fact that the
number h(n) of edges satisfies

R 2
hin) < 2h (5) +(f ()™
Theorem 5.4. The minimum universal graph for the family of all bounded-degree

outerplanar graphs on n vertices has n vertices and O(n) edges.

Proof. Since an outerplanar graph on n vertices has a bisector of size O(logn),
the result follows from Theorem 5.3.

Recently, the author has shown that there is a universal graph with cn edges
that contains all bounded-degree n-vertex trees as induced subgraphs [C2]. Many
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results on universal graphs and induced universal graphs for various classes
of graphs can be found in [Bo, BCEGS, CGl, CG2, CGP, CCG, CGS, R].
In particular, the question of determining the minimum universal graphs that
contain all n-vertex planar graphs remains open (it is between nlogn and n*/?
(see [BCEGS])).

6. Concluding Remarks

There are many aspects of separator theorems that we have not covered here. The
references include various papers for many applications such as approximation
algorithms [Ba, LT2], dynamic programming [LT2], pebbling {LT2], VLSI layout
[BCLR1, BL, L], Boolean circuits [Va2], routing [LT2], nested dissection methods
in numerical analysis [LRT, PR2] and parallel algorithms [GM, PR1] to find
planar separators.

Very recently, N. Alon, P. Seymour and R. Thomas have generalized the
separator theorem of Tarjan and Lipton to graphs excluding certain minors. A
graph H is said to be a minor of a graph G if H can be obtained from a subgraph
of G by contracting edges. The Kuratowski theorem asserts that a graph is planar
if and only if it does not have K5 or K33 as minors. The separator theorem for
graphs excluding minors can be stated as follows [AST]:

Let G be any n-vertex with non-negative vertex costs and the complete graph
K, on h vertices is not a minor of G. Then the vertices of G can be partitioned
into three parts A, B and C, such that no edge joins a vertex in 4 with a
vertex in B, neither 4 nor B has vertex cost exceeding % of the total cost, and C
contains no more than h%2n'/? vertices. Such a separator can be determined in
time O(h'/2n'/2m), where m = n + |E(G)|.
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